942 resultados para volume of fluid method
Resumo:
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g.,rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperaturedependent viscosity. Results show that average RMS errors are ∼5%–7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ∼10°C–15°C effluent reach ∼5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2‐D flows where background objects have a small spatial scale, such as sand or gravel
Resumo:
Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.
Resumo:
The Trepca Pb-Zn-Ag skarn deposit (29 Mt of ore at 3.45% Pb, 2.30% Zn, and 80 g/t Ag) is located in the Kopaonik block of the western Vardar zone, Kosovo. The mineralization, hosted by recrystallized limestone of Upper Triassic age, was structurally and lithologically controlled. Ore deposition is spatially and temporally related with the postcollisional magmatism of Oligocene age (23-26 Ma). The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralization consisting mainly of pyroxenes (Hd(54-100)Jo(0-45)Di(0-45)) resulted from the interaction of magmatic fluids associated with Oligocene (23-26 Ma) postcollisional magmatism. Whereas there is no direct contact between magmatic rocks and the mineralization, the deposit is classified as a distal Pb-Zn-Ag skarn. Abundant pyroxene reflects low oxygen fugacity (<10(-31) bar) and anhydrous environment. Fluid inclusion data and mineral assemblage limit the prograde stage within a temperature range between 390 degrees and 475 degrees C. Formation pressure is estimated below 900 bars. Isotopic composition of aqueous fluid, inclusions hosted by hedenbergite (delta D = -108 to -130 parts per thousand; delta O-18 = 7.5-8.0 parts per thousand), Mn-enriched mineralogy and high REE content of the host carbonates at the contact with the skarn mineralization suggest that a magmatic fluid was modified during its infiltration through the country rocks. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, quartz, and various carbonates. Increases in oxygen and sulfur fugacities, as well as a hydrous character of mineralization, require an open-system model. The opening of the system is related to phreatomagmatic explosion and formation of the breccia. Arsenopyrite geothermometer limits the retrograde stage within the temperature range between 350 degrees and 380 degrees C and sulfur fugacity between 10(-8.8) and 10(-7.2) bars. The principal ore minerals, galena, sphalerite, pyrite, and minor chalcopyrite, were deposited from a moderately saline Ca-Na chloride fluid at around 350 degrees C. According to the isotopic composition of fluid inclusions hosted by sphalerite (delta D = -55 to -74 parts per thousand; delta O-18 = -9.6 to -13.6 parts per thousand), the fluid responsible for ore deposition was dominantly meteoric in origin. The delta S-31 values of the sulfides spanning between -5.5 and +10 parts per thousand point to a magmatic origin of sulfur. Ore deposition appears to have been largely contemporaneous with the retrograde stage of the skarn development. Postore stage accompanied the precipitation of significant amount of carbonates including the travertine deposits at the deposit surface. Mineralogical composition of travertine varies from calcite to siderite and all carbonates contain significant amounts of Mn. Decreased formation temperature and depletion in the REE content point to an influence of pH-neutralized cold ground water and dying magmatic system.
Resumo:
The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.
Resumo:
Different management systems tend to modify soil structure and porosity over the years. The aim of this study was to study modifications in the morphostructure and porosity of dystroferric Red Latosol (Oxisol) under conventional tillage and no-tillage over a 31- year period. The study began with the description of soil profiles based on the cropping profile method, to identify the most compact structures, define sample collection points for physical and chemical analysis, and determine the water retention curve. A forest soil profile was described and used as reference. The results showed that, under conventional tillage, the microaggregate structure of the Oxisol was fragmented between 0 and 0.20 m, and compact (bulk density = 1.52 Mg m-3) in the sub-surface layer between 0.20 and 0.50 m. Under no-tillage, the structure became compacted (bulk density = 1.40 Mg m-3) between 0 and 0.60 m, but contained fissures and biopores. The volume of the class with a pore diameter of > 100 µm under no-tillage was limited, but practically non-existent in the conventional management system. On the other hand, the classes with a pore diameter of < 100 µm were not affected by the type of soil management system.
Resumo:
The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.
Resumo:
The radial displacement of a fluid annulus in a rotating circular Hele-Shaw cell has been investigated experimentally. It has been found that the flow depends sensitively on the wetting conditions at the outer interface. Displacements in a prewet cell are well described by Darcy's law in a wide range of experimental parameters, with little influence of capillary effects. In a dry cell, however, a more careful analysis of the interface motion is required; the interplay between a gradual loss of fluid at the inner interface, and the dependence of capillary forces at the outer interface on interfacial velocity and dynamic contact angle, result in a constant velocity for the interfaces. The experimental results in this case correlate in the form of an empirical scaling relation between the capillary number Ca and a dimensionless group, related to the ratio of centrifugal to capillary forces, which spans about three orders of magnitude in both quantities. Finally, the relative thickness of the coating film left by the inner interface, alpha i, is obtained as a function of Ca.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.
Resumo:
he number of deer-vehicle accidents in Iowa and around the country has steadily increased during the past 30 years. This i s basically due to: ( 1 ) increased volume of traffic; 12) an expanding network of hard surface roads, especially 4 lane interstates; and (3) a general increase in deer populations. Initidtion of a 55 MPH speed limit in 1974 and gasoline shortages in 1975 reduced deer-vehicle accident rates briefly, but since 1975, rates have continued to climb. Various methods of reducinq these accidents have been attempted in other states. These include: instal lation of rc?flective devlres, deer crossing signs, fencing, underpasses, clearing right--of--waysa,n d controlled hunting to reduce deer population s i z e . These methods have met with varying degrees of success, depending on animal behavior, deet- population fluctuations, method used, topoyr-aphy, road-side vegetation, traffic patterns, and highway configuration. This project was designed to evaluate a new ntethod of reducing deer-vehicle accidents. There are qenerally 4 important aspects of deer-vehicle accidents: danger to human l i f e , vehicle damage, loss of a valuable wildlife resource, and cost of processing accident reports. In !owe, during 1983, there were over 15,OOC) reported deer--vehicle accidents and probably many more that were not reported (Gladfelter 1984). The extent of human injury or death in Iowa i s not known, but studies in southern Michigan show that human injur ies occurred in about 4% of the deer-vehicle accidents (A1 lcn and MrCullough 1976). T h i s would indicate that in Iowa there could have been 200 human injury cases from deer-vehicle accidents i n 1983. These injuries usual 1 occur from secondary collisions when motorists try to avoid a deer on the highway, and hit some other object Vehicle darnaye from these accidents can into thousands of dollars because of the high speed involved and the size of the animal. The total amount of vehicle damage occurring in Iowa is unknown, but if the average vehicle damage was between $500-$800 per accident, estimated property damage would be between $2 1/2--$4 million annually. The value of deer lost in these accidents cannot be estimated, but recreational potential of this natural resource is surely diminished for hunters and wildlife enthusiasts. Also, there ir a great deal of money spent by governmental agencies for manpower to process accident reports and remove dead animals from highways.
Resumo:
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.
Resumo:
False identity documents constitute a potential powerful source of forensic intelligence because they are essential elements of transnational crime and provide cover for organized crime. In previous work, a systematic profiling method using false documents' visual features has been built within a forensic intelligence model. In the current study, the comparison process and metrics lying at the heart of this profiling method are described and evaluated. This evaluation takes advantage of 347 false identity documents of four different types seized in two countries whose sources were known to be common or different (following police investigations and dismantling of counterfeit factories). Intra-source and inter-sources variations were evaluated through the computation of more than 7500 similarity scores. The profiling method could thus be validated and its performance assessed using two complementary approaches to measuring type I and type II error rates: a binary classification and the computation of likelihood ratios. Very low error rates were measured across the four document types, demonstrating the validity and robustness of the method to link documents to a common source or to differentiate them. These results pave the way for an operational implementation of a systematic profiling process integrated in a developed forensic intelligence model.
Resumo:
PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available.