937 resultados para ultra wideband antennas
Resumo:
An endocrine disruptor (ED) is an exogenous compound that interferes with the body's endocrine system. Exposure to EDs may result in adverse health effects such as infertility and cancer. EDs are composed of a vast group of chemicals including compounds of natural origin such as phytoestrogens or mycotoxins and a wide range of man-made chemicals such as pesticides. Synthetic compounds may find their way into the food chain where a number of them can biomagnify. Additionally, processing activities and food contact materials may add further to the already existing pool of food contaminants. Thus, our diet is considered to be one of the main exposure routes to EDs. Some precautionary legislation has already been introduced to control production and/or application of some persistent organic pollutants with ED characteristics. However, newly emerging EDs with bioaccumulative properties have recently been reported to appear at lower tiers of the food chain but have not been monitored at the grander scale. Milk and dairy products are a major component of our diet, thus it is important to monitor them for EDs. However, most methods developed to date are devoted to one group of compounds at a time. The UHPLC-MS/MS method described here has been validated according to EC decision 2002/657/EC and allows simultaneous extraction, detection, quantitation and confirmation of 19 EDs in milk. The method calibration range is between 0.50 and 20.0 μg kg with coefficients of determination above 0.99 for all analytes. Precision varied from 4.7% to 23.4% in repeatability and reproducibility studies. Established CCα and CCβ values (0.11-0.67 μg kg) facilitate fast, reliable, quantitative and confirmatory analysis of sub μg kg levels of a range of EDs in milk.
Resumo:
The collimation of proton beams accelerated during ultra-intense laser irradiation of thin aluminum foils was measured experimentally whilst varying laser contrast. Increasing the laser contrast using a double plasma mirror system resulted in a marked decrease in proton beam divergence (20° to <10°), and the enhanced collimation persisted over a wide range of target thicknesses (50 nm–6 µm), with an increased flux towards thinner targets. Supported by numerical simulation, the larger beam divergence at low contrast is attributed to the presence of a significant plasma scale length on the target front surface. This alters the fast electron generation and injection into the target, affecting the resultant sheath distribution and dynamics at the rear target surface. This result demonstrates that careful control of the laser contrast will be important for future laser-driven ion applications in which control of beam divergence is crucial.
Resumo:
This paper is an extension to an idea coined during the 13th EUSPEN Conference (P6.23) named "surface defect machining" (SDM). The objective of this work was to demonstrate how a conventional CNC turret lathe can be used to obtain ultra high precision machined surface finish on hard steels without recourse to a sophisticated ultra precision machine tool. An AISI 4340 hard steel (69 HRC) workpiece was machined using a CBN cutting tool with and without SDM. Post-machining measurements by a Form Talysurf and a Scanning Electron Microscope (FEI Quanta 3D) revealed that SDM culminates to several key advantages (i) provides better quality of the machined surface integrity and offers (ii) lowering feed rate to 5μm/rev to obtain a machined surface roughness of 30 nm (optical quality).
Resumo:
In this paper we investigate the first and second order characteristics of the received signal at the output ofhypothetical selection, equal gain and maximal ratio combiners which utilize spatially separated antennas at the basestation. Considering a range of human body movements, we model the model the small-scale fading characteristics ofthe signal using diversity specific analytical equations which take into account the number of available signal branchesat the receiver. It is shown that these equations provide an excellent fit to the measured channel data. Furthermore, formany hypothetical diversity receiver configurations, the Nakagami-m parameter was found to be close to 1.
Resumo:
Far-travelled volcanic ashes (tephras) from Holocene eruptions in Alaska and the Pacific northwest have been traced to the easternmost extent of North America, providing the basis for a new high-precision geochronological framework throughout the continent through tephrochronology (the dating and correlation of tephra isochrons in sedimentary records). The reported isochrons are geochemically distinct, with seven correlated to documented sources in Alaska and the Cascades, including the Mazama ash from Oregon (w7600 years old) and the eastern lobe of the White River Ash from Alaska (~1150 years old). These findings mark the beginning of a tephrochronological framework of enhanced precision across North America, with applications in palaeoclimate, surface process and archaeological studies. The particle travel distances involved (up tow7000 km) also demonstrate the potential for continent-wide or trans-Atlantic socio-economic disruption from similar future eruptions.
Resumo:
The use of biosensors attached to the body for health monitoring is now readily accepted, and the merits of such systems and their potential impact on healthcare receive much attention. Wearable medical systems used in clinical applications to monitor vital signs must be comfortable to wear, yet have robust performance to ensure reliable communications links. Additionally, and vital to the success of these innovations, is that these solutions are disposable to avoid risk of patient infection and this means that they must be ultra-low cost. Antennas optimized for printing using conductive inks offer new exciting advances in making a truly disposable solution.
Resumo:
The paper presents a conceptual discussion of the characterisation and phenomenology of passive intermodulation (PIM) by the localised and distributed nonlinearities in passive devices and antennas. The PIM distinctive nature and its impact on signal distortions are examined in comparison with similar effects in power amplifiers. The main features of PIM generation are discussed and illustrated by the example of PIM due to electro-thermal nonlinearity. The issues of measurement, discrimination and modelling of PIM generated by nonlinearities in passive RF components and antennas are addressed.
Resumo:
An ultra-relativistic electron beam propagating through a high-Z solid triggersan electromagnetic cascade, whereby a large number of high-energy photons andelectron–positron pairs are produced mainly via the bremsstrahlung and Bethe–Heitler processes, respectively. These mechanisms are routinely used to generatepositron beams in conventional accelerators such as the electron–positron collider(LEP). Here we show that the application of similar physical mechanisms to a laserdrivenelectron source allows for the generation of high-quality positron beams in amuch more compact and cheaper configuration. We anticipate that the applicationof these results to the next generation of lasers might open the pathway for therealization of an all-optical high-energy electron–positron collider.
Resumo:
A carbon nanotube free-standing linearly dichroic polariser is developed using solid-state extrusion. Membrane cohesion is experimentally and numerically demonstrated to derive from inter-tube van der Waals interactions in this family of planar metastable morphologies, controlled by the chemical vapour deposition conditions. Ultra-broadband polarisation (400 nm – 2.5 mm) is shown and corroborated by effective medium and full numerical simulations.
Resumo:
An ultra-relativistic electron beam passing through a thick, high-Z solid target triggers an electromagnetic cascade, whereby a large number of high energy photons and electron-positron pairs are produced. By exploiting this physical process, we present here the first experimental evidence of the generation of ultra-short, highly collimated and ultra-relativistic positron beams following the interaction of a laser-wake field accelerated electron beam with high-Z solid targets. Clear evidence has also been obtained of the generation of GeV electron-positron jets with variable composition depending on the solid target material and thickness. The percentage of positrons in the overall leptonic beam has been observed to vary from a few per cent up to almost fifty per cent, implying a quasi-neutral electron-positron beam. We anticipate that these beams will be of direct relevance to the laboratory study of astrophysical leptonic jets and their interaction with the interstellar medium.
Resumo:
Two Liquid crystal-based reflectarrays that operate at 100 GHz and 125 GHz are presented. The first prototype (100 GHz) is used to validate the modeling and the design procedure proposed for this class of antenna. Experimental validation of the beam scanning is carried out by measuring the received power in a quasi-optical test bench, which is able to rotate the receiver in the horizontal plane. These results are used to design a second prototype antenna (125 GHz) which exhibits 2D beam scanning capabilities with a large bandwidth and scanning range that is sufficient for radar and communications applications.
Resumo:
Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45 degrees determines the X-ray s- and p-polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 10(19) - 10(21) Wcm(-2). We observe at 45 degrees the Ly-alpha doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1(st) order for sulphur and 3(rd) order for nickel.
Resumo:
Traditional Chinese Medicines (TCMs) derived from animal horns are one of the most important types of Chinese medicine. In the present study, a fast and sensitive analytical method was established for qualitative and quantitative determination of 14 nucleosides and nucleobases in animal horns using hydrophilic interaction ultra-high performance liquid chromatography coupled with triple-quadruple tandem mass spectrometry (HILIC-UPLC-QQQ-MS/MS) in selective reaction monitoring (SRM) mode. The method was optimized and validated, and showed good linearity, precision, repeatability, and accuracy. The method was successfully used to determine contents of the 14 nucleosides and nucleobases in 25 animal horn samples. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed and the 25 samples were thereby divided into two groups, which agreed with taxonomy. The method may enable quick and effective search of substitutes for precious horns.
Resumo:
The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.