985 resultados para transverse coupling
Resumo:
A Ni-promoted ligand-free palladium catalyst system for Suzuki coupling of aryl bromides has been developed in high efficiency under mild reaction conditions. It was obtained in situ by introducing NiCl2 to PdCl2/PVP using a parallel high-throughput screening technique. A wide range of aryl bromides bearing a variety of functional groups was evaluated.
Resumo:
A highly efficient palladium-catalyzed Suzuki coupling of aryl bromides with aiylboronic acids using phosphoramidite ligand 2c was developed. The phosphoramidite ligands are cost-effective and easily prepared from inexpensive, commercially available starting materials using a simple, efficient method. It represents an advance toward the discovery of low-cost catalyst systems for eventual availability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.
Resumo:
This study evaluated different techniques for surgically assisted rapid maxillary expansion (SARME) according to the type of transverse maxillary deficiency using computed tomography (CT). Six adult patients with bilateral transverse maxillary deficiencies underwent SARME. the patients were equally divided into three groups: Group I, maxillary atresia in both the anterior and posterior regions; Group II, greater maxillary atresia in the anterior region; and Group ill, increased maxillary atresia in the posterior region. in Group I, a subtotal Le Fort I osteotomy was used. in Group II, a subtotal Le Fort I osteotomy was used without pterygomaxillary suture disjunction. in Group III, a subtotal Le Fort I osteotomy was used with pterygomaxillary suture disjunction and fixation of the anterior nasal spine with steel wire. the midpalatal suture opening was evaluated preoperatively and immediately after the activation period using CT. for Group I, the opening occurred parallel to midpalatal suture; for Group II, the opening comprised a V-shape with a vertex on the posterior nasal spine; and for Group III, the opening comprised a V-shape with a vertex at the anterior nasal spine. the conclusion was that the SARME technique should be individualized according to the type of transverse maxillary deficiency.
Resumo:
Canals, A.; Breen, A. R.; Ofman, L.; Moran, P. J.; Fallows, R. A., Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements, Annales Geophysicae, vol. 20, Issue 9, pp.1265-1277
Resumo:
Gough, John; Van Handel, R., (2007) 'Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode', Journal of Statistical Physics 127(3) pp.575-607 RAE2008
Resumo:
Transverse trace-free (TT) tensors play an important role in the initial conditions of numerical relativity, containing two of the component freedoms. Expressing a TT tensor entirely, by the choice of two scalar potentials, is not a trivial task however. Assuming the added condition of axial symmetry, expressions are given in both spherical and cylindrical coordinates, for TT tensors in flat space. A coordinate relation is then calculated between the scalar potentials of each coordinate system. This is extended to a non-flat space, though only one potential is found. The remaining equations are reduced to form a second order partial differential equation in two of the tensor components. With the axially symmetric flat space tensors, the choice of potentials giving Bowen-York conformal curvatures, are derived. A restriction is found for the potentials which ensure an axially symmetric TT tensor, which is regular at the origin, and conditions on the potentials, which give an axially symmetric TT tensor with a spherically symmetric scalar product, are also derived. A comparison is made of the extrinsic curvatures of the exact Kerr solution and numerical Bowen-York solution for axially symmetric black hole space-times. The Brill wave, believed to act as the difference between the Kerr and Bowen-York space-times, is also studied, with an approximate numerical solution found for a mass-factor, under different amplitudes of the metric.
Resumo:
Both the emission properties and the evolution of the radio jets of Active Galactic Nuclei are dependent on the magnetic (B) fields that thread them. A number of observations of AGN jets suggest that the B fields they carry have a significant helical component, at least on parsec scales. This thesis uses a model, first proposed by Laing and then developed by Papageorgiou, to explore how well the observed properties of AGN jets can be reproduced by assuming a helical B field with three parameters; pitch angle, viewing angle and degree of entanglement. This model has been applied to multifrequency Very Long Baseline Interferometry (VLBI) observations of the AGN jets of Markarian 501 and M87, making it possible to derive values for the helical pitch angle, the viewing angle and the degree of entanglement for these jets. Faraday rotation measurements are another important tool for investigating the B fields of AGN jets. A helical B field component should result in a systematic gradient in the observed Faraday rotation across the jet. Real observed radio images have finite resolution; typical beam sizes for cm-wavelength VLBI observations are often comparable to or larger than the intrinsic jet widths, raising questions about how well resolved a jet must be in the transverse direction in order to reliably detect transverse Faraday-rotation structure. This thesis presents results of Monte Carlo simulations of Faraday rotation images designed to directly investigate this question, together with a detailed investigation into the probabilities of observing spurious Faraday Rotation gradients as a result of random noise and finite resolution. These simulations clearly demonstrate the possibility of detecting transverse Faraday-rotation structures even when the intrinsic jet widths are appreciably smaller than the beam width.
Resumo:
This thesis is centred on two experimental fields of optical micro- and nanofibre research; higher mode generation/excitation and evanescent field optical manipulation. Standard, commercial, single-mode silica fibre is used throughout most of the experiments; this generally produces high-quality, single-mode, micro- or nanofibres when tapered in a flame-heated, pulling rig in the laboratory. Single mode fibre can also support higher transverse modes, when transmitting wavelengths below that of their defined single-mode regime cut-off. To investigate this, a first-order Laguerre-Gaussian beam, LG01 of 1064 nm wavelength and doughnut-shaped intensity profile is generated free space via spatial light modulation. This technique facilitates coupling to the LP11 fibre mode in two-mode fibre, and convenient, fast switching to the fundamental mode via computer-generated hologram modulation. Following LP11 mode loss when exponentially tapering 125μm diameter fibre, two mode fibre with a cladding diameter of 80μm is selected fir testing since it is more suitable for satisfying the adiabatic criteria for fibre tapering. Proving a fruitful endeavour, experiments show a transmission of 55% of the original LP11 mode set (comprising TE01, TM01, HE21e,o true modes) in submicron fibres. Furthermore, by observing pulling dynamics and progressive mode-lass behaviour, it is possible to produce a nanofibre which supports only the TE01 and TM01 modes, while suppressing the HE21e,o elements of the LP11 group. This result provides a basis for experimental studies of atom trapping via mode-interference, and offers a new set of evanescent field geometries for sensing and particle manipulation applications. The thesis highlights the experimental results of the research unit’s Cold Atom subgroup, who successfully integrated one such higher-mode nanofibre into a cloud of cold Rubidium atoms. This led to the detection of stronger signals of resonance fluorescence coupling into the nanofibre and for light absorption by the atoms due to the presence of higher guided modes within the fibre. Theoretical work on the impact of the curved nanofibre surface on the atomic-surface van der Waals interaction is also presented, showing a clear deviation of the potential from the commonly-used flat-surface approximation. Optical micro- and nanofibres are also useful tools for evanescent-field mediated optical manipulation – this includes propulsion, defect-induced trapping, mass migration and size-sorting of micron-scale particles in dispersion. Similar early trapping experiments are described in this thesis, and resulting motivations for developing a targeted, site-specific particle induction method are given. The integration of optical nanofibres into an optical tweezers is presented, facilitating individual and group isolation of selected particles, and their controlled positioning and conveyance in the evanescent field. The effects of particle size and nanofibre diameter on pronounced scattering is experimentally investigated in this systems, as are optical binding effects between adjacent particles in the evanescent field. Such inter-particle interactions lead to regulated self-positioning and particle-chain speed enhancements.
Resumo:
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio. © 2011 American Physical Society.
Resumo:
Mitsubishi Electric Research Laboratories, USA