943 resultados para transit system performance
Resumo:
Chiefly tables.
Resumo:
Mode of access: Internet.
Resumo:
Purpose – The purpose of this paper is to measure the performance of commercial virtual learning environment (VLE) systems, which helps the decision makers to select the appropriate system for their institutions. Design/methodology/approach – This paper develops an integrated multiple criteria decision making approach, which combines the analytic hierarchy process (AHP) and quality function deployment (QFD), to evaluate and select the best system. The evaluating criteria are derived from the requirements of those who use the system. A case study is provided to demonstrate how the integrated approach works. Findings – The major advantage of the integrated approach is that the evaluating criteria are of interest to the stakeholders. This ensures that the selected system will achieve the requirements and satisfy the stakeholders most. Another advantage is that the approach can guarantee the benchmarking to be consistent and reliable. From the case study, it is proved that the performance of a VLE system being used at the university is the best. Therefore, the university should continue to run the system in order to support and facilitate both teaching and learning. Originality/value – It is believed that there is no study that measures the performance of VLE systems, and thus decision makers may have difficulties in system evaluation and selection for their institutions.
Resumo:
Residual current-operated circuit-breakers (RCCBs) have proved useful devices for the protection of both human beings against ventricular fibrillation and installations against fire. Although they work well with sinusoidal waveforms, there is little published information on their characteristics. Due to shunt connected non-linear devices, not the least of which is the use of power electronic equipment, the supply is distorted. Consequently, RCCBs as well as other protection relays are subject to non-sinusoidal current waveforms. Recent studies showed that RCCBs are greatly affected by harmonics, however the reasons for this are not clear. A literature search has also shown that there are inconsistencies in the analysis of the effect of harmonics on protection relays. In this work, the way RCCBs operate is examined, then a model is built with the aim of assessing the effect of non-sinusoidal current on RCCBs. Tests are then carried out on a number of RCCBs and these, when compared with the results from the model showed good correlation. In addition, the model also enables us to explain the RCCBs characteristics for pure sinusoidal current. In the model developed, various parameters are evaluated but special attention is paid to the instantaneous value of the current and the tripping mechanism movement. A similar assessment method is then used to assess the effect of harmonics on two types of protection relay, the electromechanical instantaneous relay and time overcurrent relay. A model is built for each of them which is then simulated on the computer. Tests results compare well with the simulation results, and thus the model developed can be used to explain the relays behaviour in a harmonics environment. The author's models, analysis and tests show that RCCBs and protection relays are affected by harmonics in a way determined by the waveform and the relay constants. The method developed provides a useful tool and the basic methodology to analyse the behaviour of RCCBs and protection relays in a harmonics environment. These results have many implications, especially the way RCCBs and relays should be tested if harmonics are taken into account.
Resumo:
A critical review of previous research revealed that visual attention tests, such as the Useful Field of View (UFOV) test, provided the best means of detecting age-related changes to the visual system that could potentially increase crash risk. However, the question was raised as to whether the UFOV, which was regarded as a static visual attention test, could be improved by inclusion of kinetic targets that more closely represent the driving task. A computer program was written to provide more information about the derivation of UFOV test scores. Although this investigation succeeded in providing new information, some of the commercially protected UFOV test procedures still remain unknown. Two kinetic visual attention tests (DRTS1 and 2), developed at Aston University to investigate inclusion of kinetic targets in visual attention tests, were introduced. The UFOV was found to be more repeatable than either of the kinetic visual attention tests and learning effects or age did not influence these findings. Determinants of static and kinetic visual attention were explored. Increasing target eccentricity led to reduced performance on the UFOV and DRTS1 tests. The DRTS2 was not affected by eccentricity but this may have been due to the style of presentation of its targets. This might also have explained why only the DRTS2 showed laterality effects (i.e. better performance to targets presented on the left hand side of the road). Radial location, explored using the UFOV test, showed that subjects responded best to targets positioned to the horizontal meridian. Distraction had opposite effects on static and kinetic visual attention. While UFOV test performance declined with distraction, DRTS1 performance increased. Previous research had shown that this striking difference was to be expected. Whereas the detection of static targets is attenuated in the presence of distracting stimuli, distracting stimuli that move in a structured flow field enhances the detection of moving targets. Subjects reacted more slowly to kinetic compared to static targets, longitudinal motion compared to angular motion and to increased self-motion. However, the effects of longitudinal motion, angular motion, self-motion and even target eccentricity were caused by target edge speed variations arising because of optic flow field effects. The UFOV test was more able to detect age-related changes to the visual system than were either of the kinetic visual attention tests. The driving samples investigated were too limited to draw firm conclusions. Nevertheless, the results presented showed that neither the DRTS2 nor the UFOV tests were powerful tools for the identification of drivers prone to crashes or poor driving performance.
Resumo:
Manufacturing system design is an ongoing activity within industry. Modelling tools based on Discrete Event Simulation are often used by practitioners during this design cycle. However, such tools do not adequately model the behaviour of 'direct' workers in manufacturing environments. There is an important need to expand the capability of modelling to include the relationships between human centred factors (demography, attitudes, beliefs, etc), their working environment (physical and organizational), and their subsequent performance in terms of productive routines. Therefore, this paper describes research that has formed a pilot modelling methodology that is an important first step in providing such a capability.