994 resultados para tissue preparation
Resumo:
BACKGROUND: Connexin43 (Cx43), a membrane protein involved in the control of cell-to-cell communication, is thought to play a role in the contractility of the vascular wall and in the electrical coupling of cardiac myocytes. The aim of this study was to investigate the effects of experimental hypertension on Cx43 expression in rat aorta and heart. METHODS AND RESULTS: Rats were made hypertensive after one renal artery was clipped (two kidney, one-clip renal model) or after the administration of deoxycorticosterone and salt (DOCA-salt model). After 4 weeks, all rats showed a similar increase in intra-arterial mean blood pressure and in the thickness of both the aortic wall and the heart. Northern blot analysis of aorta mRNA and immunolabeling for Cx43 showed that hypertensive rats expressed twice as much Cx43 in aorta as the control animals. In contrast, no difference in Cx43 mRNA or in the immunolabeled protein was observed in heart. CONCLUSIONS: The results show that rats exhibiting a similar degree of blood pressure elevation, as the result of different mechanisms, feature a comparable increase in Cx43 gene expression, which was observed in the aortic but not in the cardiac muscle. These data suggest that localized mechanical forces induced by hypertension are major tissue-specific regulators of Cx43 expression.
Resumo:
Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome.
Resumo:
Proper storage practices are critical to protect materials from intermingling, contamination, or degradation, and to maintain consistent aggregate gradation throughout a project. Concrete Paving Workforce Reference no.2
Resumo:
Peroxisome proliferator-activated receptor gamma (PPARgamma) is an essential regulator of adipocyte differentiation, maintenance, and survival. Deregulations of its functions are associated with metabolic diseases. We show here that deletion of one PPARgamma allele not only affected lipid storage but, more surprisingly, also the expression of genes involved in glucose uptake and utilization, the pentose phosphate pathway, fatty acid synthesis, lipolysis, and glycerol export as well as in IR/IGF-1 signaling. These deregulations led to reduced circulating adiponectin levels and an energy crisis in the WAT, reflected in a decrease to nearly half of its intracellular ATP content. In addition, there was a decrease in the metabolic rate and physical activity of the PPARgamma(+/-) mice, which was abolished by thiazolidinedione treatment, thereby linking regulation of the metabolic rate and physical activity to PPARgamma. It is likely that the PPARgamma(+/-) phenotype was due to the observed WAT dysfunction, since the gene expression profiles associated with metabolic pathways were not affected either in the liver or the skeletal muscle. These findings highlight novel roles of PPARgamma in the adipose tissue and underscore the multifaceted action of this receptor in the functional fine tuning of a tissue that is crucial for maintaining the organism in good health.
Resumo:
PURPOSE: We evaluated the feasibility of biomarker development in the context of multicenter clinical trials. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded (FFPE) tissue samples were collected from a prospective adjuvant colon cancer trial (PETACC3). DNA was isolated from tumor as well as normal tissue and used for analysis of microsatellite instability, KRAS and BRAF genotyping, UGT1A1 genotyping, and loss of heterozygosity of 18 q loci. Immunohistochemistry was used to test expression of TERT, SMAD4, p53, and TYMS. Messenger RNA was retrieved and tested for use in expression profiling experiments. RESULTS: Of the 3,278 patients entered in the study, FFPE blocks were obtained from 1,564 patients coming from 368 different centers in 31 countries. In over 95% of the samples, genomic DNA tests yielded a reliable result. Of the immmunohistochemical tests, p53 and SMAD4 staining did best with reliable results in over 85% of the cases. TERT was the most problematic test with 46% of failures, mostly due to insufficient tissue processing quality. Good quality mRNA was obtained, usable in expression profiling experiments. CONCLUSIONS: Prospective clinical trials can be used as framework for biomarker development using routinely processed FFPE tissues. Our results support the notion that as a rule, translational studies based on FFPE should be included in prospective clinical trials.
Resumo:
It is well known that visceral adipose tissue (VAT) is associated with insulin resistance (IR). Considerable debate remains concerning the potential positive effect of thigh subcutaneous adipose tissue (TSAT). Our objective was to observe whether VAT and TSAT are opposite, synergistic or additive for both peripheral and hepatic IR. Fifty-two volunteers (21 male/31 female) between 30 and 75 years old were recruited from the general population. All subjects were sedentary overweight or obese (mean BMI 33.0 ± 3.4 kg/m(2)). Insulin sensitivity was determined by a 4-h hyperinsulinemic-euglycemic clamp with stable isotope tracer dilution. Total body fat and lean body mass were determined by dual X-ray absorptiometry. Abdominal and mid-thigh adiposity was determined by computed tomography. VAT was negatively associated with peripheral insulin sensitivity, while TSAT, in contrast, was positively associated with peripheral insulin sensitivity. Subjects with a combination of low VAT and high TSAT had the highest insulin sensitivity, subjects with a combination of high VAT and low TSAT were the most insulin resistant. These associations remained significant after adjusting for age and gender. These data confirm that visceral excess abdominal adiposity is associated with IR across a range of middle-age to older men and women, and further suggest that higher thigh subcutaneous fat is favorably associated with better insulin sensitivity. This strongly suggests that these two distinct fat distribution phenotypes should both be considered in IR as important determinants of cardiometabolic risk.
Resumo:
PURPOSE: To improve fat saturation in coronary MRA at 3T by using a spectrally selective adiabatic T2 -Prep (WSA-T2 -Prep). METHODS: A conventional adiabatic T2 -Prep (CA-T2 -Prep) was modified, such that the excitation and restoration pulses were of differing bandwidths. On-resonance spins are T2 -Prepared, whereas off-resonance spins, such as fat, are spoiled. This approach was combined with a CHEmically Selective Saturation (CHESS) pulse to achieve even greater fat suppression. Numerical simulations were followed by phantom validation and in vivo coronary MRA. RESULTS: Numerical simulations demonstrated that augmenting a CHESS pulse with a WSA-T2 -Prep improved robustness to B1 inhomogeneities and that this combined fat suppression was effective over a broader spectral range than that of a CHESS pulse in a conventional T2 -Prepared sequence. Phantom studies also demonstrated that the WSA-T2 -Prep+CHESS combination produced greater fat suppression across a range of B1 values than did a CA-T2 -Prep+CHESS combination. Lastly, in vivo measurements demonstrated that the contrast-to-noise ratio between blood and myocardium was not adversely affected by using a WSA-T2 -Prep, despite the improved abdominal and epicardial fat suppression. Additionally, vessel sharpness improved. CONCLUSION: The proposed WSA-T2 -Prep method was shown to improve fat suppression and vessel sharpness as compared to a CA-T2 -Prep technique, and to also increase fat suppression when combined with a CHESS pulse.
Resumo:
INTRODUCTION: Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood - in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). METHODS: We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1-219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. RESULTS: Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. CONCLUSION: Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.
Resumo:
In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor-β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.
Resumo:
OBJECTIVES: To assess the effects of intracerebroventricular (i.c.v.) leptin administration on rats fed ad libitum or fasted on 3H GDP binding to brown adipose tissue (BAT). SUBJECTS: Groups of 5-6 ten-week-old male Wistar rats. EXPERIMENTAL DESIGN: An i.c.v. cannula was inserted and unilateral denervation of interscapular brown adipose tissue (BAT) was performed 5 d before each study. Thereafter, leptin was infused i.c.v. during 72 h while rats were fed ad libitum or fasted. Vehicle-infused, pair-fed or fasted rats were used as controls. MEASUREMENTS: 3H GDP binding to innervated and denervated BAT mitochondria. RESULTS: 3H GDP binding to innervated or denervated BAT of rats fed ab libitum compared to vehicle-infused, pair-fed rats was not increased by i.c.v. leptin. 3H GDP binding was lower in fasted than in fed rats, and the difference was larger in innervated than denervated BAT. I.c.v. leptin increased 3H GDP binding by 30% in innervated, and by 51% in denervated BAT (P < 0.05) in fasted rats. CONCLUSIONS: I.c.v. leptin does not increase 3H GDP binding to BAT of rats fed ad libitum compared to pair-fed (food-restricted) rats. In contrast, i.c.v. leptin produces a mild stimulation of 3H GDP binding to BAT of fasted rats. This effect is not mediated by the sympathetic nervous system, because it is observed in both innervated and denervated BAT. These results are compatible with the concept that, in fasting rats, the decrease in leptin secretion contributes to the reduction in 3H GDP binding to BAT mitochondria.
Resumo:
PURPOSE: This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. METHODS: Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. RESULTS: In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. CONCLUSION: Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. TRANSLATIONAL RELEVANCE: This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
Systemic lupus erythematosus and primary Sjögren's syndrom are the two major connective tissue diseases. A better knowledge of their physiopathology allows us today to propose an adapted therapy. Moreover progress concerns the oldest treatment, hydroxychloroquine, and biotherapy. Hydroxychloroquine is still an actual treatment for lupus, its positive effects are better understood today. Nevertheless it does not seem to be efficient to treat primitive Sjögren. Biotherapy targeting B lymphocytes seems efficient in these two connective tissue diseases. Anti TNF therapy is not recommended and seems to induce connective tissue diseases. The real news is the recent approval and reimbursement in Switzerland of the new drug belimumab (Benlysta) in case of moderate lupus.
Resumo:
Copy number variation (CNV) is a key source of genetic diversity, but a comprehensive understanding of its phenotypic effect is only beginning to emerge. We have generated a CNV map in wild mice and classical inbred strains. Genome-wide expression data from six major organs show not only that expression of genes within CNVs tend to correlate with copy number changes, but also that CNVs influence the expression of genes in their vicinity, an effect that extends up to half a megabase. Genes within CNVs show lower expression and more specific spatial expression patterns than genes mapping elsewhere. Our analyses reveal differential constraint on copy number changes of genes expressed in different tissues. Dosage alterations of brain-expressed genes are less frequent than those of other genes and are buffered by tighter transcriptional regulation. Our study provides initial evidence that CNVs shape tissue transcriptomes on a global scale.
Resumo:
Psoriasis is a common chronic inflammatory skin disease, the study of which might also be of considerable value to the understanding of other inflammatory and autoimmune-type diseases, such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis and diabetes mellitus. There is clear evidence that T cells and dendritic cells have a central role in psoriasis. Based on recent data from humans and animal models, we propose that a psoriasis lesion can be triggered and sustained by the local network of skin-resident immune cells. This concept focuses attention on local, rather than systemic, components of the immune system for rationalized therapeutic approaches of psoriasis and possibly also other chronic inflammatory diseases.