879 resultados para time varying parameter model
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.
Resumo:
This report presents a study on the problem of spacecraft attitude control using magnetic actuators. Several existing approaches are reviewed and one control strategy is implemented and simulated. A time-varying feedback control law achieving inertial pointing for magnetically actuated spacecraft is implemented. The report explains the modeling of the spacecraft rigid body dynamics, kinematics and attitude control in detail. Besides the fact that control laws have been established for stabilization around local equilibrium, this report presents the results of a control law that yields a generic, global solution for attitude stabilization of a magnetically actuated spacecraft. The report also involves the use MATLAB as a tool for both modeling and simulation of the spacecraft and controller. In conclusion, the simulation outlines the performance of the controller in independently stabilizing the spacecraft in three mutually perpendicular directions.
Resumo:
Exposure Fusion and other HDR techniques generate well-exposed images from a bracketed image sequence while reproducing a large dynamic range that far exceeds the dynamic range of a single exposure. Common to all these techniques is the problem that the smallest movements in the captured images generate artefacts (ghosting) that dramatically affect the quality of the final images. This limits the use of HDR and Exposure Fusion techniques because common scenes of interest are usually dynamic. We present a method that adapts Exposure Fusion, as well as standard HDR techniques, to allow for dynamic scene without introducing artefacts. Our method detects clusters of moving pixels within a bracketed exposure sequence with simple binary operations. We show that the proposed technique is able to deal with a large amount of movement in the scene and different movement configurations. The result is a ghost-free and highly detailed exposure fused image at a low computational cost.
Resumo:
Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called "atoms of thoughts", that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations.
Resumo:
OBJECTIVE To examine the degree to which use of β blockers, statins, and diuretics in patients with impaired glucose tolerance and other cardiovascular risk factors is associated with new onset diabetes. DESIGN Reanalysis of data from the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial. SETTING NAVIGATOR trial. PARTICIPANTS Patients who at baseline (enrolment) were treatment naïve to β blockers (n=5640), diuretics (n=6346), statins (n=6146), and calcium channel blockers (n=6294). Use of calcium channel blocker was used as a metabolically neutral control. MAIN OUTCOME MEASURES Development of new onset diabetes diagnosed by standard plasma glucose level in all participants and confirmed with glucose tolerance testing within 12 weeks after the increased glucose value was recorded. The relation between each treatment and new onset diabetes was evaluated using marginal structural models for causal inference, to account for time dependent confounding in treatment assignment. RESULTS During the median five years of follow-up, β blockers were started in 915 (16.2%) patients, diuretics in 1316 (20.7%), statins in 1353 (22.0%), and calcium channel blockers in 1171 (18.6%). After adjusting for baseline characteristics and time varying confounders, diuretics and statins were both associated with an increased risk of new onset diabetes (hazard ratio 1.23, 95% confidence interval 1.06 to 1.44, and 1.32, 1.14 to 1.48, respectively), whereas β blockers and calcium channel blockers were not associated with new onset diabetes (1.10, 0.92 to 1.31, and 0.95, 0.79 to 1.13, respectively). CONCLUSIONS Among people with impaired glucose tolerance and other cardiovascular risk factors and with serial glucose measurements, diuretics and statins were associated with an increased risk of new onset diabetes, whereas the effect of β blockers was non-significant.
Resumo:
This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.
Resumo:
Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.
Resumo:
Dynamic systems, especially in real-life applications, are often determined by inter-/intra-variability, uncertainties and time-varying components. Physiological systems are probably the most representative example in which population variability, vital signal measurement noise and uncertain dynamics render their explicit representation and optimization a rather difficult task. Systems characterized by such challenges often require the use of adaptive algorithmic solutions able to perform an iterative structural and/or parametrical update process towards optimized behavior. Adaptive optimization presents the advantages of (i) individualization through learning of basic system characteristics, (ii) ability to follow time-varying dynamics and (iii) low computational cost. In this chapter, the use of online adaptive algorithms is investigated in two basic research areas related to diabetes management: (i) real-time glucose regulation and (ii) real-time prediction of hypo-/hyperglycemia. The applicability of these methods is illustrated through the design and development of an adaptive glucose control algorithm based on reinforcement learning and optimal control and an adaptive, personalized early-warning system for the recognition and alarm generation against hypo- and hyperglycemic events.
Resumo:
AIMS Due to a high burden of systemic cardiovascular events, current guidelines recommend the use of statins in all patients with peripheral artery disease (PAD). We sought to study the impact of statin use on limb prognosis in patients with symptomatic PAD enrolled in the international REACH registry. METHODS Statin use was assessed at study enrolment, as well as a time-varying covariate. Rates of the primary adverse limb outcome (worsening claudication/new episode of critical limb ischaemia, new percutaneous/surgical revascularization, or amputation) at 4 years and the composite of cardiovascular death/myocardial infarction/stroke were compared among statin users vs. non-users. RESULTS A total of 5861 patients with symptomatic PAD were included. Statin use at baseline was 62.2%. Patients who were on statins had a significantly lower risk of the primary adverse limb outcome at 4 years when compared with those who were not taking statins [22.0 vs. 26.2%; hazard ratio (HR), 0.82; 95% confidence interval (CI), 0.72-0.92; P = 0.0013]. Results were similar when statin use was considered as a time-dependent variable (P = 0.018) and on propensity analysis (P < 0.0001). The composite of cardiovascular death/myocardial infarction/stroke was similarly reduced (HR, 0.83; 95% CI, 0.73-0.96; P = 0.01). CONCLUSION Among patients with PAD in the REACH registry, statin use was associated with an ∼18% lower rate of adverse limb outcomes, including worsening symptoms, peripheral revascularization, and ischaemic amputations. These findings suggest that statin therapy not only reduces the risk of adverse cardiovascular events, but also favourably affects limb prognosis in patients with PAD.
Resumo:
We show that nonperturbative effects are logarithmically enhanced for transverse-momentum-dependent observables such as qT spectra of electroweak bosons in hadronic collisions and jet broadening at e+e− colliders. This enhancement arises from the collinear anomaly, a mechanism characteristic for transverse observables, which induces logarithmic dependence on the hard scale in the product of the soft and collinear matrix elements. Our analysis is based on an operator product expansion and provides, for the first time, a systematic, model-independent way to study nonperturbative effects for this class of observables. For the case of jet broadening, we relate the leading correction to the nonperturbative shift of the thrust distribution.
Resumo:
BACKGROUND Polypharmacy, defined as the concomitant use of multiple medications, is very common in the elderly and may trigger drug-drug interactions and increase the risk of falls in patients receiving vitamin K antagonists. OBJECTIVE To examine whether polypharmacy increases the risk of bleeding in elderly patients who receive vitamin K antagonists for acute venous thromboembolism (VTE). DESIGN We used a prospective cohort study. PARTICIPANTS In a multicenter Swiss cohort, we studied 830 patients aged ≥ 65 years with VTE. MAIN MEASURES We defined polypharmacy as the prescription of more than four different drugs. We assessed the association between polypharmacy and the time to a first major and clinically relevant non-major bleeding, accounting for the competing risk of death. We adjusted for known bleeding risk factors (age, gender, pulmonary embolism, active cancer, arterial hypertension, cardiac disease, cerebrovascular disease, chronic liver and renal disease, diabetes mellitus, history of major bleeding, recent surgery, anemia, thrombocytopenia) and periods of vitamin K antagonist treatment as a time-varying covariate. KEY RESULTS Overall, 413 (49.8 %) patients had polypharmacy. The mean follow-up duration was 17.8 months. Patients with polypharmacy had a significantly higher incidence of major (9.0 vs. 4.1 events/100 patient-years; incidence rate ratio [IRR] 2.18, 95 % confidence interval [CI] 1.32-3.68) and clinically relevant non-major bleeding (14.8 vs. 8.0 events/100 patient-years; IRR 1.85, 95 % CI 1.27-2.71) than patients without polypharmacy. After adjustment, polypharmacy was significantly associated with major (sub-hazard ratio [SHR] 1.83, 95 % CI 1.03-3.25) and clinically relevant non-major bleeding (SHR 1.60, 95 % CI 1.06-2.42). CONCLUSIONS Polypharmacy is associated with an increased risk of both major and clinically relevant non-major bleeding in elderly patients receiving vitamin K antagonists for VTE.
Resumo:
OBJECTIVE Whether or not a high risk of falls increases the risk of bleeding in patients receiving anticoagulants remains a matter of debate. METHODS We conducted a prospective cohort study involving 991 patients ≥ 65 years of age who received anticoagulants for acute venous thromboembolism (VTE) at nine Swiss hospitals between September 2009 and September 2012. The study outcomes were as follows: the time to a first major episode of bleeding; and clinically relevant nonmajor bleeding. We determined the associations between the risk of falls and the time to a first episode of bleeding using competing risk regression, accounting for death as a competing event. We adjusted for known bleeding risk factors and anticoagulation as a time-varying covariate. RESULTS Four hundred fifty-eight of 991 patients (46%) were at high risk of falls. The mean duration of follow-up was 16.7 months. Patients at high risk of falls had a higher incidence of major bleeding (9.6 vs. 6.6 events/100 patient-years; P = 0.05) and a significantly higher incidence of clinically relevant nonmajor bleeding (16.7 vs. 8.3 events/100 patient-years; P < 0.001) than patients at low risk of falls. After adjustment, a high risk of falls was associated with clinically relevant nonmajor bleeding [subhazard ratio (SHR) = 1.74, 95% confidence interval (CI) = 1.23-2.46], but not with major bleeding (SHR = 1.24, 95% CI = 0.83-1.86). CONCLUSION In elderly patients who receive anticoagulants because of VTE, a high risk of falls is significantly associated with clinically relevant nonmajor bleeding, but not with major bleeding. Whether or not a high risk of falls is a reason against providing anticoagulation beyond 3 months should be based on patient preferences and the risk of VTE recurrence.
Resumo:
BACKGROUND Although the possibility of bleeding during anticoagulant treatment may limit patients from taking part in physical activity, the association between physical activity and anticoagulation-related bleeding is uncertain. OBJECTIVES To determine whether physical activity is associated with bleeding in elderly patients taking anticoagulants. PATIENTS/METHODS In a prospective multicenter cohort study of 988 patients aged ≥65 years receiving anticoagulants for venous thromboembolism, we assessed patients' self-reported physical activity level. The primary outcome was the time to a first major bleeding, defined as fatal bleeding, symptomatic bleeding in a critical site, or bleeding causing a fall in hemoglobin or leading to transfusions. The secondary outcome was the time to a first clinically-relevant non-major bleeding. We examined the association between physical activity level and time to a first bleeding using competing risk regression, accounting for death as a competing event. We adjusted for known bleeding risk factors and anticoagulation as a time-varying covariate. RESULTS During a mean follow-up of 22 months, patients with a low, moderate, and high physical activity level had an incidence of major bleeding of 11.6, 6.3, and 3.1 events per 100 patient-years, and an incidence of clinically relevant non-major bleeding of 14.0, 10.3, and 7.7 events per 100 patient-years, respectively. A high physical activity level was significantly associated with a lower risk of major bleeding (adjusted sub-hazard ratio 0.40, 95%-CI 0.22-0.72). There was no association between physical activity and non-major bleeding. CONCLUSIONS A high level of physical activity is associated with a decreased risk of major bleeding in elderly patients receiving anticoagulant therapy. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE Treatment with statins reduces the rate of cardiovascular events in high-risk patients, but residual risk persists. At least part of that risk may be attributable to atherogenic dyslipidemia characterized by low high-density lipoprotein cholesterol (≤40 mg/dL) and high triglycerides (triglycerides≥150 mg/dL). METHODS We studied subjects with stroke or transient ischemic attack in the Prevention of Cerebrovascular and Cardiovascular Events of Ischemic Origin With Terutroban in Patients With a History of Ischemic Stroke or Transient Ischemic Attack (PERFORM; n=19,100) and Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL; n=4731) trials who were treated with a statin and who had high-density lipoprotein cholesterol and triglycerides measurements 3 months after randomization (n=10,498 and 2900, respectively). The primary outcome measure for this exploratory analysis was the occurrence of major cardiovascular events (nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death). We also performed a time-varying analysis to account for all available high-density lipoprotein cholesterol and triglyceride measurements. RESULTS A total of 10% of subjects in PERFORM and 9% in SPARCL had atherogenic dyslipidemia after ≥3 months on start statin therapy. After a follow-up of 2.3 years (PERFORM) and 4.9 years (SPARCL), a major cardiovascular event occurred in 1123 and 485 patients in the 2 trials, respectively. The risk of major cardiovascular events was higher in subjects with versus those without atherogenic dyslipidemia in both PERFORM (hazard ratio, 1.36; 95% confidence interval, 1.14-1.63) and SPARCL (hazard ratio, 1.40; 95% confidence interval, 1.06-1.85). The association was attenuated after multivariable adjustment (hazard ratio, 1.23; 95% confidence interval, 1.03-1.48 in PERFORM and hazard ratio, 1.24; 95% confidence interval, 0.93-1.65 in SPARCL). Time-varying analysis confirmed these findings. CONCLUSIONS The presence of atherogenic dyslipidemia was associated with higher residual cardiovascular risk in PERFORM and SPARCL subjects with stroke or transient ischemic attack receiving statin therapy. Specific therapeutic interventions should now be trialed to address this residual risk.
Resumo:
IMPORTANCE High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. OBJECTIVE To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of cyclophosphamide. DESIGN, SETTING, AND PARTICIPANTS The Autologous Stem Cell Transplantation International Scleroderma (ASTIS) trial, a phase 3, multicenter, randomized (1:1), open-label, parallel-group, clinical trial conducted in 10 countries at 29 centers with access to a European Group for Blood and Marrow Transplantation-registered transplant facility. From March 2001 to October 2009, 156 patients with early diffuse cutaneous systemic sclerosis were recruited and followed up until October 31, 2013. INTERVENTIONS HSCT vs intravenous pulse cyclophosphamide. MAIN OUTCOMES AND MEASURES The primary end point was event-free survival, defined as time from randomization until the occurrence of death or persistent major organ failure. RESULTS A total of 156 patients were randomly assigned to receive HSCT (n = 79) or cyclophosphamide (n = 77). During a median follow-up of 5.8 years, 53 events occurred: 22 in the HSCT group (19 deaths and 3 irreversible organ failures) and 31 in the control group (23 deaths and 8 irreversible organ failures). During the first year, there were more events in the HSCT group (13 events [16.5%], including 8 treatment-related deaths) than in the control group (8 events [10.4%], with no treatment-related deaths). At 2 years, 14 events (17.7%) had occurred cumulatively in the HSCT group vs 14 events (18.2%) in the control group; at 4 years, 15 events (19%) had occurred cumulatively in the HSCT group vs 20 events (26%) in the control group. Time-varying hazard ratios (modeled with treatment × time interaction) for event-free survival were 0.35 (95% CI, 0.16-0.74) at 2 years and 0.34 (95% CI, 0.16-0.74) at 4 years. CONCLUSIONS AND RELEVANCE Among patients with early diffuse cutaneous systemic sclerosis, HSCT was associated with increased treatment-related mortality in the first year after treatment. However, HCST conferred a significant long-term event-free survival benefit. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN54371254.