944 resultados para strong coupling
Resumo:
Diabetic individuals are more susceptible to infections and this seems to be related to impaired phagocyte function. Alveolar macrophages (AMs) are the first barrier to prevent respiratory infections Leukotrienes (LTs) increase AM phagocytic activity via Fc gamma R. In this study, we compared AMs from diabetic and nondiabetic rats for phagocytosis via Fc gamma R and the roles of LTs and insulin Diabetes was induced in male Wistar rats by alloxan (42 mg/kg, i.v); macrophages were obtained by bronchoalveolar lavage and IgG-opsonised sheep red blood cells (IgG-SRBC) were used as targets. LTs were added to the AMs 5 min before the addition of IgG-SRBC. AMs were treated with a LT synthesis inhibitor (zileuton, 10 mu M), or antagonists of the LTB(4) receptor (CP105 696, 10 mu M) cys-LT receptor (MK571, 10 mu M), 30 or 20 min before the addition of IgG-SRBC, respectively. We found that the phagocytosis of IgG-SRBC by AMs from diabetic rats is impaired compared with non-diabetic rats. Treatment with the LT inhibitor/antagonists significantly reduced AM phagocytosis in non-diabetic but not diabetic rats. During the phagocytosis of IgG-SRBC LTB(4) and LTC(4) were produced by AMs from both groups. The addition of exogenous LTB(4) or LTD(4) potentiated phagocytosis similarly in both groups Phagocytosis was followed by the phosphorylation of PKC-delta. ERK and Akt This was reduced by zileuton treatment in AMs from non-diabetic but not diabetic rats The addition of insulin to AMs further increased the phagocytosis by increasing PKC-delta phosphorylation These results suggest that the impaired phagocytosis found in AMs from diabetic rats is related to a deficient coupling of LTs to the Fc gamma R signaling cascade and that insulin has a key role in this coupling An essential role for insulin in Innate immunity is suggested (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
Given a model 2-complex K(P) of a group presentation P, we associate to it an integer matrix Delta(P) and we prove that a cellular map f : K(P) -> S(2) is root free (is not strongly surjective) if and only if the diophantine linear system Delta(P) Y = (deg) over right arrow (f) has an integer solution, here (deg) over right arrow (f) is the so-called vector-degree of f
Resumo:
A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved
Resumo:
The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.
Resumo:
We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type la supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Themean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions ( similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.
Resumo:
Recently, in [3] Horava and Melby-Thompson proposed a nonrelativistic gravity theory with extended gauge symmetry that is free of the spin-0 graviton. We propose a minimal substitution recipe to implement this extended gauge symmetry which reproduces the results obtained by them. Our prescription has the advantage of being manifestly gauge invariant and immediately generalizable to other fields, like matter. We briefly discuss the coupling of gravity with scalar and vector fields found by our method. We show also that the extended gauge invariance in gravity does not force the value of. to be lambda = 1 as claimed in [3]. However, the spin-0 graviton is eliminated even for general lambda.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The influence of the interlayer coupling on formation of the quantized Hall phase at the filling factor v = 2 was studied in the multilayer GaAs/AlGaAs heterostructures The disorder broaden Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure On the other hand. the quantized Hall phase of the weakly-coupled multilayers emitted an asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry indicates a formation of the Fermi Surface in the quantized Hall phase of the multilayer electron system due to the interlayer peicolation. A sharp decrease of the single-particle scattering time associated with the extended states oil the Fermi surface was observed at the filling factor v = 2. (C) 2009 Elsevier B.V All rights reserved
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.