983 resultados para stiffness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate here that mesoporous tin dioxide (abbreviated M-SnO2) with a broad pore size distribution can be a prospective anode in lithium-ion batteries. M-SnO2 with pore size ranging between 2 and 7.5 nm was synthesized using a hydrothermal procedure involving two different surfactants of slightly different sizes, and characterized. The irreversible capacity loss that occurs during the first discharge and charge cycle is 890 mAh g(-1), which is smaller than the 1,010-mAh g(-1) loss recorded for mesoporous SnO2 (abbreviated S-SnO2) synthesized using a single surfactant. After 50 cycles, the discharge capacity of M-SnO2 (504 mAh g(-1)) is higher than that of S-SnO2 (401 mAh g(-1)) and solid nanoparticles of SnO2 (abbreviated nano-SnO2 < 4 mAh g(-1)) and nano-SnO2. Transmission electron microscopy revealed higher disorder in the pore arrangement in M-SnO2. This, in turn imparts lower stiffness to M-SnO2 (elastic modulus, E (R) a parts per thousand aEuro parts per thousand 14.5 GPa) vis-a-vis S-SnO2 (E (R) a parts per thousand aEuro parts per thousand 20.5 GPa), as obtained using the nanoindentation technique. Thus, the superior battery performance of M-SnO2 is attributed to its intrinsic material mechanical property. The fluidity of the internal microstructure of M-SnO2 resulted in a lower degree of aggregation of Sn particles compared to S-SnO2 and nano-SnO2 structural stabilization and long-term cyclability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The curvature related locking phenomena in the out-of-plane deformation of Timoshenko and Euler-Bernoulli curved beam elements are demonstrated and a novel approach is proposed to circumvent them. Both flexure and Torsion locking phenomena are noticed in Timoshenko beam and torsion locking phenomenon alone in Euler-Bernoulli beam. Two locking-free curved beam finite element models are developed using coupled polynomial displacement field interpolations to eliminate these locking effects. The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the governing equations. The presented of penalty terms in the couple displacement fields incorporates the flexure-torsion coupling and flexure-shear coupling effects in an approximate manner and produce no spurious constraints in the extreme geometric limits of flexure, torsion and shear stiffness. the proposed couple polynomial finite element models, as special cases, reduce to the conventional Timoshenko beam element and Euler-Bernoulli beam element, respectively. These models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. The efficacy, accuracy and reliability of the proposed models to straight and curved beam applications are demonstrated through numerical examples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we look for nonuniform rotating beams that are isospectral to a given uniform nonrotating beam. A rotating nonuniform beam is isospectral to the given uniform nonrotating beam if both the beams have the same spectral properties, i.e., both the beams have the same set of natural frequencies under a given boundary condition. The Barcilon-Gottlieb type transformation is proposed that converts the governing equation of a rotating beam to that of a uniform nonrotating beam. We show that there exist rotating beams isospectral to a given uniform nonrotating beam under some special conditions. The boundary conditions we consider are clamped-free and hinged-free with an elastic hinge spring. An upper bound on the rotation speed for which isospectral beams exist is proposed. The mass and stiffness distributions for these nonuniform rotating beams which are isospectral to the given uniform nonrotating beam are obtained. We use these mass and stiffness distributions in a finite element analysis to show that the obtained beams are isospectral to the given uniform nonrotating beam. A numerical example of a beam having a rectangular cross section is presented to show the application of our analysis. DOI: 10.1115/1.4006460]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few decades, Metal Matrix Composites (MMCs) have emerged as a material system offering tremendous potential for future applications. The primary advantages offered by these materials are their improved mechanical properties, particularly in the areas of wear, strength and stiffness. Of the MMCs, Aluminum matrix composites have grown in prominence due to their low density, low melting point and low cost. However, machining these materials remains a challenging task mainly due to the high abrasiveness of the reinforcing phases. Conventional machining processes such as turning, milling or drilling are adopted for machining MMCs. In this article, the existing and ongoing developments in machining MMCs vis-a-vis tool life, tool wear, machinability and understanding chip formation mechanism have been highlighted. Most of the studies discussed in this review will focus on Aluminum matrix composites. Certain areas of machining studies which have hitherto not been investigated have also been detailed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The governing differential equation of a rotating beam becomes the stiff-string equation if we assume uniform tension. We find the tension in the stiff string which yields the same frequency as a rotating cantilever beam with a prescribed rotating speed and identical uniform mass and stiffness. This tension varies for different modes and are found by solving a transcendental equation using bisection method. We also find the location along the rotating beam where equivalent constant tension for the stiff string acts for a given mode. Both Euler-Bernoulli and Timoshenko beams are considered for numerical results. The results provide physical insight into relation between rotating beams and stiff string which are useful for creating basis functions for approximate methods in vibration analysis of rotating beams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we seek to find non-rotating beams with continuous mass and flexural stiffness distributions, that are isospectral to a given uniform rotating beam. The Barcilon-Gottlieb transformation is used to convert the fourth order governing equation of a non-rotating beam, to a canonical fourth order eigenvalue problem. If the coefficients in this canonical equation match with the coefficients of the uniform rotating beam equation, then the non-rotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients leads to a pair of coupled differential equations. We solve these coupled differential equations for a particular case, and thereby obtain a class of non-rotating beams that are isospectral to a uniform rotating beam. However, to obtain isospectral beams, the transformation must leave the boundary conditions invariant. We show that the clamped end boundary condition is always invariant, and for the free end boundary condition to be invariant, we impose certain conditions on the beam characteristics. We also verify numerically that the frequencies of the non-rotating beam obtained using the finite element method (FEM) are the exact frequencies of the uniform rotating beam. Finally, the example of beams having a rectangular cross-section is presented to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these rectangular non-rotating beams, to calculate the frequencies of the rotating beam. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the stiffness and mass per unit length distributions of a rotating beam, which is isospectral to a given uniform axially loaded nonrotating beam, are determined analytically. The Barcilon-Gottlieb transformation is extended so that it transforms the governing equation of a rotating beam into the governing equation of a uniform, axially loaded nonrotating beam. Analysis is limited to a certain class of Euler-Bernoulli cantilever beams, where the product between the stiffness and the cube of mass per unit length is a constant. The derived mass and stiffness distributions of the rotating beam are used in a finite element analysis to confirm the frequency equivalence of the given and derived beams. Examples of physically realizable beams that have a rectangular cross section are shown as a practical application of the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the development of a numerical model for simulating the shaking table tests on wrap-faced reinforced soil retaining walls. Some of the physical model tests carried out on reinforced soil retaining walls subjected to dynamic excitation through uniaxial shaking tests are briefly discussed. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wraparound technique with dry sand backfill and instrumented with displacement sensors, accelerometers, and soil pressure sensors. Results showed that the displacements decrease with the increase in number of reinforcement layers, whereas acceleration amplifications were not affected significantly. Numerical modeling of these shaking table tests is carried out using the Fast Lagrangian Analysis of Continua program. The numerical model is validated by comparing the results with experiments on physical models. Responses of wrap-faced walls with varying numbers of reinforcement layers are compared. Sensitivity analysis performed on the numerical models showed that the friction and dilation angle of backfill material and stiffness properties of the geotextile-soil interface are the most affecting parameters for the model response.