962 resultados para stem canker


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Concentrations of C, N and P were determined in the internodes of the stem of Echinochloa polystachya (H.B.K.) Hitchcock with the aim of showing their longitudinal distributions. The concentrations ranged from 421.93 to 466.03 mgCgDW-1; from 2.78 to 13.61 mg N gDW-1 and from 0.151 to 1.074 mg P gDW-1. N and P concentrations increased towards the apical direction of the stem. C concentrations showed an inverse trend. These distributions suggest that N and P are transported to the apical region of the stem, while the majority of the C compounds observed in the distal region must be retained in the supporting structure of the plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several leaf anatomical features are potentially systematically informative within both the family Vochysiaceae and the order Myrtales, notably tracheoidal idioblasts, mucilage cells and secretory canals. Tracheoids with spiral wall thickenings are present in the mesophyll of most species of Vochysia, and also occur in several other families of Myrtales. Mucilage cells are common in the leaf epidermis in some Vochysiaceae. Secretory ducts are present in the midrib in Salvertia and Vochysia, which are apparently closely related, although Salvertia also shares some leaf anatomical characters with Qualea and Callisthene. Anatomical data do not support the segregation of Ruizterania from Qualea; leaves of R. albiflora leaves are very similar to those of Q. paraensis in venation pattern, and leaf and stem anatomy. Different venation patterns are characteristic of sections within the genus Qualea, but within the large genus Vochysia, leaf anatomy is variable even within a subsection. Amongst other Myrtales, leaf anatomy of Vochysiaceae most closely resembles that of Combretaceae and Onagraceae. © 2002 The Linnean Society of London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were conducted to show the effect of different substrata on the development of stem cuttings of Lippia alba made of limonene-carvone chemotype. The experiment was done in the College of Agronomical Sciences, UNESP, Botucatu, SP, Brazil in 2000. The cuttings were planted in polystyrene trays consisting of 72 cells. The cuttings had about 0.20 m of length and were put in the following substrata: Fine sand (T1), commercial substratum (T2), carbonised rice peel and local soil (T3), local soil, cow manure and carbonised rice peel (T4), vermiculite (T5), and carbonised rice peel (T6). After 40 days the development of stem cuttings were evaluated. High rate of rooting of stem cuttings was verified, with average of 95% and no significant difference between the treatments. In relation to dry mass of aerial parts and dry mass of roots, significant differences were found. For dry mass production of aerial parts the commercial substratum (T2) and the local soil, cow manure, carbonised rice peel (T4) were optimal. For mass of roots the local soil, cow manure, carbonised rice peel (T4) proved to be the best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aloysia triphylla (L'Hérit) Britton is a perennial and bushy plant, with simple, entire, lanceolate and whorl shaped leaves and originally from South America. It is used as medicinal plant in Brazil with stomatic and sedative properties. The employment of stem cuttings for propagation of pre-selected plants, acquired great importance, because it eliminates the juvenile phase of seedlings, which can be produced in a shorter period of time. The rooting of stem cuttings is stimulated by auxin and, boric acid supply is essential for growth and development of initial rootlets. This micronutrient is required 48 hours after plant segments have been placed into auxin solution and it can be supplied any time, including the seedling growth period. The experiment was carried out in the Department of Plant Production, UNESP-Botucatu-SP-Brazil, with stem-cuttings of Aloysia triphylla (L'Hérit) Britton, Verbenaceae obtained from the Medicinal and Aromatic Plant Garden. The aim of the work was to verify the influence of growth regulators and boric acid on stem cutting rooting of this species. The 15 cm-stem cuttings, without leaves, were submerged during 24 hs in the following solutions: water; 150 mg.L-1 of IBA; 150 mg.L-1 of IBA+ Boric acid; 250 mg.L-1 of IBA; 250 mg.L-1 of IBA + Boric acid. The statistical design was entirely randomized with 5 treatments and 3 replications, totalizing 15 plots with 10 stem cuttings each. They were planted on propylene trays with vermiculite and kept under spraying condition during twenty five days. The best results were observed in treatment 250 mg.L -1 of IBA+ Boric acid on number of roots, length of roots, rooting percentage, fresh and dry weight of leaves when compared with all other treatments. We can conclude that this treatment is the most suitable for stem cutting rooting of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia patients is essential to predict prognosis and survival. In 20 patients treated at the Bone Marrow Transplantation Unit of São José do Rio Preto (São Paulo, Brazil), we used fluorescence in situ hybridization (FISH) to investigate the frequency of cells with BCR/ABL rearrangement at diagnosis and at distinct intervals after allo-HSCT until complete cytogenetic remission (CCR). We investigated the disease-free survival, overall survival in 3 years and transplant-related mortality rates, too. Bone marrow samples were collected at 1, 2, 3, 4, 6, 12, and 24 months after transplantation and additional intervals as necessary. Success rate of the FISH analyses was 100%. CCR was achieved in 75% of the patients, within on average of 3.9 months; 45% patients showed CCR within 60 days after HSCT. After 3 years of the allo-HSCT, overall survival rate was 60%, disease-free survival was 50% and the transplant-related mortality rate was 40%. The study demonstrated that the BCR-ABL FISH assay is useful for follow-up of chronic myeloid leukemia patients after HSCT and that the clinical outcome parameters in our patient cohort were similar to those described for other bone marrow transplantation units. ©FUNPEC-RP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eucalyptus urophylla S. T. Blake is outstanding for valuable wood production potential, adaptation plasticity for different environmental conditions, and for tolerance to canker. However, genetic improvement of this specie in Brazil depends on the existence of genetic variability in the introduced populations. The objective of this study was to investigate the genetic variation and gains in quantitative traits in a population established in 1992 in Selvíria - MS. The progeny trial was established in a partially balanced, 8 x 8 lattice design, with 64 families, collected at Anhembi Experimental Station (IPEF/ESALQ/USP). Each plot was made up of eight trees planted in a 3 × 3 m spacing. Significant among families genetic variations were observed in diameter at breast height (DBH), bark type, stem form, and survival. Estimates of average family heritability were high for all traits, ranging from 0.50 to 0.85. The simulated selection by using multi-effect index showed that under a varying number of plants per family. This method is the most indicated to maximize genetic gains (7.24%) and the effective population size (69.3). These results are a useful support for the transformation of this test into a seedling seed orchard and to become a source of vegetative material to build a clonal seed orchard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasiodiplodia theobromae was found causing stem rot on commercial production of Begonia x elatior in São Paulo, Brazil. Illustrations, morphological and molecular description are provided. Based on the morphology, this fungus was recognized as L. theobromae. However, L. theobromae has high similarity with other Lasiodiplodia species, some of which are not possible to be separated by morphological characters. Molecular identification of the fungus isolated from the infected tissues was conducted. The strain from begonia clustered with other isolates of L. theobromae. This is the first report of the occurrence of L. theobromae on B. elatior. © 2012 Australasian Plant Pathology Society Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tendinitis is an important disease that leads to lameness and decreased performance in equine athletes and results in high costs associated with therapy due to a long recovery period and a high rate of recurrence. Although, several treatments for equine tendinitis have been described, few are effective in significantly improving the quality of the extracellular matrix and reducing the rate of recurrence. The use of cell therapy with mesenchymal stem cells (MSCs) derived from various sources has received much attention because of its therapeutic potential for equine tendinitis. In this paper, we review patents on stem cell therapy and the specific use of MSCs for the treatment of equine tendinitis. © 2013 Bentham Science Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n=5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1×105) were than encapsulated inside 60μl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI. © 2013 Informa UK Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to isolate, culture, and characterize mesenchymal stem cells (MSCs) from horse bone marrow (BM) using the techniques of flow cytometry, immunocytochemistry, cytogenetics, and electron microscopy. Immunophenotypic analysis revealed the presence of MSCs with high expression of the CD90 marker, lower expression of the CD44 marker, and absent expression of the CD34 marker. In assays of differentiation, the positive response to osteogenic (OST), chondrogenic (CDG), and adipogenic (ADP) differentiation signals was observed and characterized by deposition of calcium-rich extracellular matrix (OST), proteoglycans and collagen II (CDG) and intracellular deposition of fat drops (ADP). In immunocytochemical characterization, MSCs were immunopositive for CD44, vimentin, and PCNA, and they were negative for CD13. In the ultrastructural analysis of MSCs, the most outstanding characteristic was the presence of rough endoplasmic reticulum with very dilated cisterns filled with a low electrodensity material. Additionally, MSCs had normal karyotypes (2n=64) as evidenced by cytogenetic analysis, and aneuploidy in metaphase was not observed. The protocols for isolating, culturing, and characterizing equine MSCs used in this study were shown to be appropriate for the production of a cell population with a good potential for differentiation and without aneuploidy that can be used to study future cellular therapies. © 2013 Wiley Periodicals, Inc.