914 resultados para statistical data analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate how hospital capacity was managed focusing on standardizing the admission and discharge processes. Methods: This study was set in a 900-bed university affiliated hospital of the National Health Service, near Barcelona (Spain). This is a cross-sectional study of a set of interventions which were gradually implemented between April and December 2008. Mainly, they were focused on standardizing the admission and discharge processes to improve patient flow. Primary administrative data was obtained from the 2007 and 2009 Hospital Database. Main outcome measures were median length of stay, percentage of planned discharges, number of surgery cancellations and median number of delayed emergency admissions at 8:00 am. For statistical bivariate analysis, we used a Chi-squared for linear trend for qualitative variables and a Wilcoxon signed ranks test and a Mann–Whitney test for non-normal continuous variables. Results: The median patients’ global length of stay was 8.56 days in 2007 and 7.93 days in 2009 (p<0.051). The percentage of patients admitted the same day as surgery increased from 64.87% in 2007 to 86.01% in 2009 (p<0.05). The number of cancelled interventions due to lack of beds was 216 patients in 2007 and 42 patients in 2009. The median number of planned discharges went from 43.05% in 2007 to 86.01% in 2009 (p<0.01). The median number of emergency patients waiting for an in-hospital bed at 8:00 am was 5 patients in 2007 and 3 patients in 2009 (p<0.01). Conclusions: In conclusion, standardization of admission and discharge processes are largely in our control. There is a significant opportunity to create important benefits for increasing bed capacity and hospital throughput.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate how hospital capacity was managed focusing on standardizing the admission and discharge processes. Methods: This study was set in a 900-bed university affiliated hospital of the National Health Service, near Barcelona (Spain). This is a cross-sectional study of a set of interventions which were gradually implemented between April and December 2008. Mainly, they were focused on standardizing the admission and discharge processes to improve patient flow. Primary administrative data was obtained from the 2007 and 2009 Hospital Database. Main outcome measures were median length of stay, percentage of planned discharges, number of surgery cancellations and median number of delayed emergency admissions at 8:00¿am. For statistical bivariate analysis, we used a Chi-squared for linear trend for qualitative variables and a Wilcoxon signed ranks test and a Mann¿Whitney test for non-normal continuous variables. Results:The median patients' global length of stay was 8.56 days in 2007 and 7.93 days in 2009 (p<0.051). The percentage of patients admitted the same day as surgery increased from 64.87% in 2007 to 86.01% in 2009 (p<0.05). The number of cancelled interventions due to lack of beds was 216 patients in 2007 and 42 patients in 2009. The median number of planned discharges went from 43.05% in 2007 to 86.01% in 2009 (p<0.01). The median number of emergency patients waiting for an in-hospital bed at 8:00¿am was 5 patients in 2007 and 3 patients in 2009 (p<0.01). Conclusions: In conclusion, standardization of admission and discharge processes are largely in our control. There is a significant opportunity to create important benefits for increasing bed capacity and hospital throughput.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: infants hospitalised in neonatology are inevitably exposed to pain repeatedly. Premature infants are particularly vulnerable, because they are hypersensitive to pain and demonstrate diminished behavioural responses to pain. They are therefore at risk of developing short and long-term complications if pain remains untreated. CONTEXT: compared to acute pain, there is limited evidence in the literature on prolonged pain in infants. However, the prevalence is reported between 20 and 40 %. OBJECTIVE : this single case study aimed to identify the bio-contextual characteristics of neonates who experienced prolonged pain. METHODS : this study was carried out in the neonatal unit of a tertiary referral centre in Western Switzerland. A retrospective data analysis of seven infants' profile, who experienced prolonged pain ,was performed using five different data sources. RESULTS : the mean gestational age of the seven infants was 32weeks. The main diagnosis included prematurity and respiratory distress syndrome. The total observations (N=55) showed that the participants had in average 21.8 (SD 6.9) painful procedures that were estimated to be of moderate to severe intensity each day. Out of the 164 recorded pain scores (2.9 pain assessment/day/infant), 14.6 % confirmed acute pain. Out of those experiencing acute pain, analgesia was given in 16.6 % of them and 79.1 % received no analgesia. CONCLUSION: this study highlighted the difficulty in managing pain in neonates who are exposed to numerous painful procedures. Pain in this population remains underevaluated and as a result undertreated.Results of this study showed that nursing documentation related to pain assessment is not systematic.Regular assessment and documentation of acute and prolonged pain are recommended. This could be achieved with clear guidelines on the Assessment Intervention Reassessment (AIR) cyclewith validated measures adapted to neonates. The adequacy of pain assessment is a pre-requisite for appropriate pain relief in neonates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For several years, the Iowa Department of Transportation has constructed bypasses along rural highways. Most bypasses were constructed on the state’s Commercial Industrial Network (CIN). Now that work on the CIN has been completed and the system is open to traffic, it is possible to study the impacts of bypasses. In the past, construction of highway bypasses has led community residents and business people to raise concerns about the loss of business activity. For policy development purposes, it is essential to understand the impacts that a bypass might have on safety, the community, and economics. By researching these impacts, policies can be produced to help to alleviate any negative impacts and create a better system that is ultimately more cost-effective. This study found that the use of trade area analysis does not provide proof that a bypass can positively or negatively impact the economy of a rural community. The analysis did show that, even though the population of a community may be stable for several years and per capita income is increasing, sales leakage still occurs. The literature, site visits, and data make it is apparent that a bypass can positively affect a community. Some conditions that would need to exist in order to maximize a positive impact include the installation of signage along the bypass directing travelers to businesses and services in the community, community or regional plans that include the bypass in future land development scenarios, and businesses adjusting their business plans to attract bypass users. In addition, how proactive a community is in adapting to the bypass will determine the kinds of effects felt in the community. Results of statistical safety analysis indicate that, at least when crashes are separated by severity, bypasses with at-grade accesses appear to perform more poorly than either the bypasses with fully separated accesses or with a mix of at-grade and fully separated accesses. However, the benefit in terms of improved safety of bypasses with fully separated accesses relative to bypasses with a mixed type of accesses is not statistically conclusive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study deals with the analysis and mapping of Swiss franc interest rates. Interest rates depend on time and maturity, defining term structure of the interest rate curves (IRC). In the present study IRC are considered in a two-dimensional feature space - time and maturity. Exploratory data analysis includes a variety of tools widely used in econophysics and geostatistics. Geostatistical models and machine learning algorithms (multilayer perceptron and Support Vector Machines) were applied to produce interest rate maps. IR maps can be used for the visualisation and pattern perception purposes, to develop and to explore economical hypotheses, to produce dynamic asset-liability simulations and for financial risk assessments. The feasibility of an application of interest rates mapping approach for the IRC forecasting is considered as well. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We conducted this study to determine the relative influence of various mechanical and patient-related factors on the incidence of dislocation after primary total hip asthroplasty (THA). Of 2,023 THAs, 21 patients who had at least 1 dislocation were compared with a control group of 21 patients without dislocation, matched for age, gender, pathology, and year of surgery. Implant positioning, seniority of the surgeon, American Society of Anesthesiologists (ASA) score, and diminished motor coordination were recorded. Data analysis included univariate and multivariate methods. The dislocation risk was 6.9 times higher if total anteversion was not between 40 degrees and 60 degrees and 10 times higher in patients with high ASA scores. Surgeons should pay attention to total anteversion (cup and stem) of THA. The ASA score should be part of the preoperative assessment of the dislocation risk.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article provides an in-depth study of long-term female unemployment in Catalonia.Long-term unemployment statistics reveal which social groups are most likely to experience difficulty re-entering the labour market. In this case, we found that women are mainly affected by this type of labour exclusion, in particular poorly qualified, working-class women who are aged over 45 and with family responsibilities.The article aims to explore how the overlapping of factors such as gender, age, social class, origin and the division of work based on gender are related to long-term female unemployment. Moreover, we were able to detect which conceptual tools provide us with the production/reproduction paradigm so as to be able to analyse the future of female unemployment. The methodology we used combines quantitative and qualitative approaches. On the one hand, the analysis of secondary statistical data focusing on Catalonia is useful in understanding the situation from a macro-social perspective. On the other hand, an exploratory discussion group enables us to investigate social imaginary practises among unemployed working class women aged over 45. This discussion group was held in Igualada -capital of the Anoia region - an area of Catalonia deeply affected by unemployment in the current economic crisis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper advocates for the creation of a federated, hybrid database in the cloud, integrating law data from all available public sources in one single open access system - adding, in the process, relevant meta-data to the indexed documents, including the identification of social and semantic entities and the relationships between them, using linked open data techniques and standards such as RDF. Examples of potential benefits and applications of this approach are also provided, including, among others, experiences from of our previous research, in which data integration, graph databases and social and semantic networks analysis were used to identify power relations, litigation dynamics and cross-references patterns both intra and inter-institutionally, covering most of the World international economic courts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linezolid is used off-label to treat multidrug-resistant tuberculosis (MDR-TB) in absence of systematic evidence. We performed a systematic review and meta-analysis on efficacy, safety and tolerability of linezolid-containing regimes based on individual data analysis. 12 studies (11 countries from three continents) reporting complete information on safety, tolerability, efficacy of linezolid-containing regimes in treating MDR-TB cases were identified based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Meta-analysis was performed using the individual data of 121 patients with a definite treatment outcome (cure, completion, death or failure). Most MDR-TB cases achieved sputum smear (86 (92.5%) out of 93) and culture (100 (93.5%) out of 107) conversion after treatment with individualised regimens containing linezolid (median (inter-quartile range) times for smear and culture conversions were 43.5 (21-90) and 61 (29-119) days, respectively) and 99 (81.8%) out of 121 patients were successfully treated. No significant differences were detected in the subgroup efficacy analysis (daily linezolid dosage ≤600 mg versus >600 mg). Adverse events were observed in 63 (58.9%) out of 107 patients, of which 54 (68.4%) out of 79 were major adverse events that included anaemia (38.1%), peripheral neuropathy (47.1%), gastro-intestinal disorders (16.7%), optic neuritis (13.2%) and thrombocytopenia (11.8%). The proportion of adverse events was significantly higher when the linezolid daily dosage exceeded 600 mg. The study results suggest an excellent efficacy but also the necessity of caution in the prescription of linezolid.