958 resultados para static structure factor
Resumo:
Background: Recent publications show that smoking and alcohol use among adolescents with unplanned pregnancy is increasing and the causes need to be further studied. Objective: To determine the association between living in a non-intact family household and the presence of smokers and consumers of alcoholic beverages in the adolescents’ environment with smoking and consuming alcoholic beverages in adolescents with unplanned pregnancies. Methods: A cross-sectional study was carried out among 785 pregnant adolescents, aged 13-19 years. Data was collected by trained interviewers using a self-administered questionnaire. The association was determined using multivariate logistic regression analysis. Results: In adolescents with unplanned pregnancies, the prevalence of active smoking was 21.2% and of alcohol consumption, 41.5%. The percentage of smoking at home was 57.4% and alcohol consumption, 77.5%. Approximately, 80.3% of adolescents with unplanned pregnancies had friends who smoked and 90.6% consumed alcoholic beverages. Multivariate logistic regression analysis shows that having friends who smoke or who consume alcoholic beverages is the most important risk factor for substance use in adolescents with unplanned pregnancies. Smoking and alcohol consumption at home are not associated with smoking in adolescents with unplanned pregnancies. Conclusion: Socializing with friends who smoke and/or consume alcoholic beverages constitutes the most important risk factor for substance use among adolescents with unplanned pregnancies.
Resumo:
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric ($G_{E}$) and the magnetic ($G_{M}$) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton $\large(R = \frac{\sigma (e^{+}p)}{\sigma (e^{-}p)}\large)$. The ratio $R$ was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of $R$ on kinematic variables such as squared four-momentum transfer ($Q^{2}$) and the virtual photon polarization parameter ($\varepsilon$). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH$_{2}$) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the $Q^{2}$ dependence of $R$ at high $\varepsilon$ ($\varepsilon > $ 0.8) and the $\varepsilon$ dependence of $R$ at $\langle Q^{2} \rangle \approx 0.85$ GeV$^{2}$. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.
Resumo:
This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.
Resumo:
A confirmatory attempt is made to assess the validity of a hierarchic structural model of fears. Using a sample comprising 1,980 adult volunteers in Portugal, the present study set out to delineate the multidimensional structure and hierarchic organization of a large set of feared stimuli by contrasting a higher-order model comprising general fear at the highest level against a first-order model and a unitary fear model. Following a refinement of the original model, support was found for a five-factor model on a first-order level, namely (1) Social fears, (2) Agoraphobic fears, (3) Fears of bodily injury, death and illness, (4) Fears of display to aggressive scenes, and (5) Harmless animals fears. These factors in turn loaded on a General fear factor at the second-order level. However, the firstorder model was as parsimonious as a hierarchic higher-order model. The hierarchic model supports a quantitative hierarchic approach which decomposes fear disorders into agoraphobic, social, and specific (animal and bloodinjury) fears.
Resumo:
We present the first results of a study on meson spectroscopy using a covariant formalism based on the Covariant Spectator Theory. Our approach is derived directly in Minkowski space and it approximates the Bethe–Salpeter equation by taking effectively into account the contributions from both ladder and crossed ladder diagrams in the $q\bar{q}$ interaction kernel. A general Lorentz structure of the kernel is tested and chiral constraints on the kernel are discussed. Results for the pion form factor are also presented.
Resumo:
We introduce a covariant approach in Minkowski space for the description of quarks and mesons that exhibits both chiral-symmetry breaking and confinement. In a simple model for the interquark interaction, the quark mass function is obtained and used in the calculation of the pion form factor. We study the effects of the mass function and the different quark pole contributions on the pion form factor.
Resumo:
Purpose: To evaluate psychometric properties of Quinn’s leadership questionnaire (CFV questionnaire; 1988) to the Portuguese health services. Design: Cross-sectional study, using the Quinn’s leadership questionnaire, administered to registered nurses and physicians in Portuguese health care services (N = 687). Method: Self-administered survey applied to two samples. In the first (of convenience; N = 249 Portuguese health professionals) were performed exploratory factor and reliability analysis to the CFV questionnaire. In the second sample (stratified; N = 50 surgical units of 33 Portuguese hospitals) was performed confirmatory factor analysis using LISREL 8.80. Findings: The first sample supported an eight-factor solution accounting for 65.46% of the variance, in an interpretable factorial structure (loadings> .50), with Cronbach’s α upper than .79. This factorial structure, replicated with the second sample, showed reasonable fit for each of the 8 leadership roles, quadrants, and global model. The models evidenced, generally, nomological validity, with scores between good and acceptable (.235 < x2/df < 2.055 e .00 < RMSEA < .077). Conclusions: Quinn’s leadership questionnaire presented good reliability and validity for the eight leadership roles, showing to be suitable for use in hospital health care context. Key-Words: Leadership; Quinn’s CVF questionnaire; health services; Quinn’s competing values.
Resumo:
In the last few decades, offshore field has grown fast especially after the notable development of technologies, explorations of oil and gas in deep water and the high concern of offshore companies in renewable energy mainly Wind Energy. Fatigue damage was noticed as one of the main problems causing failure of offshore structures. The purpose of this research is to focus on the evaluation of Stress Concentration Factor and its influence on Fatigue Life for 2 tubular KT-Joints in offshore Jacket structure using different calculation methods. The work is done by using analytical calculations, mainly Efthymiou’s formulations, and numerical solutions, FEM analysis, using ABAQUS software. As for the analytical formulations, the calculations were done according to the geometrical parameters of each method using excel sheets. As for the numerical model, 2 different types of tubular KT-Joints are present where for each model 5 shell element type, 3 solid element type and 3 solid-with-weld element type models were built on ABAQUS. Meshing was assigned according to International Institute of Welding (IIW) recommendations, 5 types of mesh element, to evaluate the Hot-spot stresses. 23 different types of unitary loading conditions were assigned, 9 axial, 7 in-plane bending moment and 7 out-plane bending moment loads. The extraction of Hot-spot stresses and the evaluation of the Stress Concentration Factor were done using PYTHON scripting and MATLAB. Then, the fatigue damage evaluation for a critical KT tubular joint based on Simplified Fatigue Damage Rule and Local Approaches (Strain Damage Parameter and Stress Damage Parameter) methods were calculated according to the maximum Stress Concentration Factor conducted from DNV and FEA methods. In conclusion, this research helped us to compare different results of Stress Concentration Factor and Fatigue Life using different methods and provided us with a general overview about what to study next in the future.
Resumo:
The interaction of organic chromophores with light initiates ultrafast processes in the timescale of femtoseconds. An atomistic understanding of the mechanism driving such photoinduced reactions opens up the door to exploit them for our benefit. This thesis studies the interactions of ultraviolet light with the DNA/RNA molecules and the amino-acid tryptophan. Using some of the most accurate electronic structure methods and sophisticated environmental modelling, the works documented herein enable quantitative comparisons with cutting-edge experimental data. The relaxation pathways undertaken by the excited molecule are revealed through static and dynamical investigations of the excited-state potential energy surface. The profound role played by the dynamic response of the environment to guide the excitation in these timescales is addressed thoroughly.
Resumo:
The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future. Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.
Resumo:
Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.
Resumo:
Hydroxyurea (HU), or hydroxycarbamide, is used for the treatment of some myeloproliferative and neoplastic diseases, and is currently the only drug approved by the FDA for use in sickle cell disease (SCD). Despite the relative success of HU therapy for SCD, a genetic disorder of the hemoglobin β chain that results in red-cell sickling, hemolysis, vascular inflammation and recurrent vasoocclusion, the exact mechanisms by which HU actuates remain unclear. We hypothesized that HU may modulate endothelial angiogenic processes, with important consequences for vascular inflammation. The effects of HU (50-200 μM; 17-24 h) on endothelial cell functions associated with key steps of angiogenesis were evaluated using human umbilical vein endothelial cell (HUVEC) cultures. Expression profiles of the HIF1A gene and the miRNAs 221 and 222, involved in endothelial function, were also determined in HUVECs following HU administration and the direct in vivo antiangiogenic effects of HU were assessed using a mouse Matrigel-plug neovascularization assay. Following incubation with HU, HUVECs exhibited high cell viability, but displayed a significant 75% inhibition in the rate of capillary-like-structure formation, and significant decreases in proliferative and invasive capacities. Furthermore, HU significantly decreased HIF1A expression, and induced the expression of miRNA 221, while downregulating miRNA 222. In vivo, HU reduced vascular endothelial growth factor (VEGF)-induced vascular development in Matrigel implants over 7 days. Findings indicate that HU is able to inhibit vessel assembly, a crucial angiogenic process, both in vitro and in vivo, and suggest that some of HU's therapeutic effects may occur through novel vascular mechanisms.
Resumo:
Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects.
Resumo:
Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.
Resumo:
This clinical study has investigated the antigenic activity of bacterial contents from exudates of acute apical abscesses (AAAs) and their paired root canal contents regarding the stimulation capacity by levels of interleukin (IL)-1 beta and tumor necrosis factor alpha (TNF-α) throughout the root canal treatment against macrophage cells. Paired samples of infected root canals and exudates of AAAs were collected from 10 subjects. Endodontic contents were sampled before (root canal sample [RCS] 1) and after chemomechanical preparation (RCS2) and after 30 days of intracanal medication with calcium hydroxide + chlorhexidine gel (Ca[OH]2 + CHX gel) (RCS3). Polymerase chain reaction (16S rDNA) was used for detection of the target bacteria, whereas limulus amebocyte lysate was used to measure endotoxin levels. Raw 264.7 macrophages were stimulated with AAA exudates from endodontic contents sampled in different moments of root canal treatment. Enzyme-linked immunosorbent assays were used to measure the levels of TNF-α and IL-1 beta. Parvimonas micra, Porphyromonas endodontalis, Dialister pneumosintes, and Prevotella nigrescens were the most frequently detected species. Higher levels of endotoxins were found in samples from periapical exudates at RCS1 (P < .005). In fact, samples collected from periapical exudates showed a higher stimulation capacity at RCS1 (P < .05). A positive correlation was found between endotoxins from exudates with IL-1 beta (r = 0.97) and TNF-α (r = 0.88) production (P < .01). The significant reduction of endotoxins and bacterial species achieved by chemomechanical procedures (RCS2) resulted in a lower capacity of root canal contents to stimulate the cells compared with that at RCS1 (P < .05). The use of Ca(OH)2 + CHX gel as an intracanal medication (RCS3) improved the removal of endotoxins and bacteria from infected root canals (P < .05) whose contents induced a lower stimulation capacity against macrophages cells at RCS1, RCS2, and RCS3 (P < .05). AAA exudates showed higher levels of endotoxins and showed a greater capacity of macrophage stimulation than the paired root canal samples. Moreover, the use of intracanal medication improved the removal of bacteria and endotoxins from infected root canals, which may have resulted in the reduction of the inflammatory potential of the root canal content.