956 resultados para specific surface area


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluctuations in estrogen and progesterone during the menstrual cycle can cause changes in body systems other than the reproductive system. For example, progesterone is involved in the regulation of fluid balance in the renal tubules and innervation of the diaphragm via the phrenic nerve. However, few significant changes in the responses of the cardiovascular and respiratory systems, blood lactate, bodyweight, performance and ratings of perceived exertion are evident across the cycle. Nevertheless, substantial evidence exists to suggest that increased progesterone levels during the luteal phase cause increases in both core and skin temperatures and alter the temperature at which sweating begins during exposure to both ambient and hot environments. As heat illness is characterised by a significant increase in body temperature, it is feasible that an additional increase in core temperature during the luteal phase could place females at an increased risk of developing heat illness during this time. In addition, it is often argued that physiological gender differences such as oxygen consumption, percentage body fat and surface area-to-mass ratio place females at a higher risk of heat illness than males. This review examines various physiological responses to heat exposure during the menstrual cycle at rest and during exercise, and considers whether such changes increase the risk of heat illness in female athletes during a particular phase of the menstrual cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermogravimetric analysis has been widely applied in kinetic studies of carbon gasification, with the associated temporal weight change profiles being used to extract kinetic information and to validate gasification models. However the weight change profiles are not always governed by the intrinsic gasification activity because of the effect of chemisorption and its dynamics. In the present work we theoretically determine the criteria under which weight change profiles can be used to determine intrinsic kinetics for CO2 and O2 gasification by examining the region in which the chemisorption dynamics can be assumed pseudo-steady. It is found that the validity of the pseudo-steady assumption depends on the experimental conditions as well as on the initial surface area of carbon. Based on known mechanisms and rate constants an active surface area region is identified within which the steady state assumption is valid and the effect of chemisorption dynamics is negligible. The size of the permissible region is sensitive to the reaction temperature and gas pressure. The results indicate that in some cases the thermogravimetric data should be used with caution in kinetic studies. A large amount of literature on thermogravimetric analyzer determined char gasification kinetics is examined and the importance of chemisorption dynamics for the data assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to determine the pharmacokinetics of [C-14]diclofenac, [C-14]salicylate and [H-3]clonidine using a single pass rat head perfusion preparation. The head was perfused with 3-[N-morpholino] propane-sulfonic acid-buffered Ringer's solution. Tc-99m-red blood cells and a drug were injected in a bolus into the internal carotid artery and collected from the posterior facial vein over 28 min. A two-barrier stochastic organ model was used to estimate the statistical moments of the solutes. Plasma, interstitial and cellular distribution volumes for the solutes ranged from 1.0 mL (diclofenac) to 1.6 mL (salicylate), 2.0 mL (diclofenac) to 4.2 mL (water) and 3.9 mL (salicylate) to 20.9 mL (diclofenac), respectively. A comparison of these volumes to water indicated some exclusion of the drugs from the interstitial space and salicylate from the cellular space. Permeability-surface area (PS) products calculated from plasma to interstitial fluid permeation clearances (CLPI) (range 0.02-0.40 mL s(-1)) and fractions of solute unbound in the perfusate were in the order: diclofenac>salicylate >clonidine>sucrose (from 41.8 to 0.10 mL s(-1)). The slow efflux of diclofenac, compared with clonidine and salicylate, may be related to its low average unbound fraction in the cells. This work accounts for the tail of disposition curves in describing pharmacokinetics in the head.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introducing poly(ethylene oxide) surfactant to aluminum hydrate colloids can effectively direct the crystal growth of boehmite and the crystal morphology of final gamma-alumina crystallites. Fibrous crystallites of gamma-alumina about 3-4 nm thick and 30-60 nm long are obtained. They stack randomly, resulting in a structure with a low contact area between the fibers but with a very large porosity. Such a structure exhibits strong resistance to sintering when heated to high temperatures. A sample retains a BET surface area of 68 m(2)/g, after being heated to 1473 K. The surfactant molecules form micelles that interact with the colloid particles of aluminum hydroxide through hydrogen bonding. This interaction is not sufficient to change the intrinsic crystal structure of boehmite, but induces profound changes in the morphology of boehmite crystallites and their growth. The surfactant-induced fiber formation (SIFF) process has distinct features from templated synthesis but shows similarities in some respects to biomineralization processes in which inorganic crystals with complex morphological shapes can be formed in biological systems. SIFF offers an effective approach to create new nanostructures of inorganic oxide from aqueous media.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contribution of demographic, injury, pre-morbid, and parent factors to a child's functional outcome at 6 months post-burn injury was examined. Sixty-eight children, aged 5-14 years with percent total body surface area (%TBSA) burns ranging from

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The acidic properties of hexagonal mesoporous aluminosilicates synthesized via a new successful short time synthesis route using leached saponite and a low concentration of surfactant are thoroughly investigated. The resulting aluminosilicate mesoporous materials with high Si/Al ratios of around 11 have a maximal surface area of 1130 m(2)/g, a pore volume of 0.92 cm(3)/g, and a narrow pore size distribution at around 3 nm. The replacement of the sodium ions, present as counterions in the synthesized aluminosilicates, with protons imparts useful catalytic acidity. This acidity is extensively studied with FTIR spectroscopy after adsorption of ammonia and cyclohexylamine, while deuterated acetonitrile differentiates between Bronsted and Lewis acidity. Al-27 NMR spectroscopy determined the coordination of the aluminum in the FSM materials. Simultaneously the effect of an additional Al incorporation, utilizing sodium aluminate, aluminum nitrate, and aluminum isopropoxide is studied. From an acidic point of view, the incorporation with Al(NO3)(3) appears to be the most optimal, as the sample has a very high amount of acid sites (1.3 mmol/g). Investigating the nature of the acid sites it is found that in all samples except the one incorporated with Al(NO3)(3), more Bronsted than Lewis sites are present, both sites being quite acidic as they resist desorption temperatures up to 300 degreesC. Probing the coordination and location of the Al atoms, all the catalysts appeared to have mostly tetrahedral aluminum, up to 95% of the total Al amount for the proton exchanged AI(NO3)(3) incorporated sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disposition kinetics of [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [H-3] palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [H-3] palmitate and metabolites were measured in four experimentalgroups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [H-3] palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [H-3] palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of 'pellicular' type supports were fabricated by direct gamma-radiation-mediated graft polymerisation of styrene onto polypropylene, followed by aminomethylation. Raman spectroscopy was used for measuring the level of penetration of polystyrene graft into polypropylene, and other structural features such as density of graft and depth of functionalisation. The kinetics of the coupling of fluorenylmethylcarbamate (Fmoc)-labelled amino acids, to the aminomethylated polystyrene grafts have been measured by UV absorption followed cleavage of the Fmoc chromophore. The Raman spectroscopy results showed that for this series of experiments the calculated rate coefficient for coupling of Fmoc-labelled amino acids was primarily dependent on graft thickness, but was also influenced by the proportion of polystyrene graft to polypropylene. In general, it was also shown that with increasing loading capacity of support the calculated rate coefficient for amino-acid coupling decreased correspondingly. In addition, a support that had both a high rate coefficient and a high loading capacity was prepared from polypropylene base material with a co-continuous porous structure (high surface area). (C) 2003 Society of Chemical Industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lifter use in dryers improves mass transfer by increasing the amount of surface area available for transfer and also by increasing the velocity of gas over the particle surface. An even cross-sectional distribution of particles in a dryer improves the efficiency of operation by ensuring that evaporation from falling particles is taking place for the maximum fraction of the rotation period of the drier. Studies on lifter design to improve the cross-sectional particle distribution were performed on angled lifters. A single lifter was used and the mass-transfer rate examined as a function of angular lifter displacement. Analysis of the mass transfer characteristics of single lifters allowed performance comparisons and recommendations for lifter design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background : Femoral shaft fracture incidence increases in older adults and is associated with low-energy trauma. Apart from bone density, the distribution and size of bone contributes to its strength. Aim : To examine if bone geometry and density of the femoral mid-shaft in older adults differs by sex and race, we studied 197 White women, 225 Black women, 242 White men, and 148 Black men aged 70-79 years participating in the Health, Aging, and Body Composition study; a prospective cohort study in the USA. A secondary purpose of the study was to examine the association of site-specific muscle and fat to bone geometry and density. Subjects and methods : Subjects were community-dwelling and reported no difficulty walking one-quarter of a mile or climbing stairs. Mid-femoral volumetric bone mineral density (vBMD, mg cm -3 ), total area (TA), cortical area (CA), medullary area (MA), cross-sectional moments of inertia (CSMI: I x , I y , J ), and muscle and fat areas (cm 2 ) were determined by computed tomography (CT; GE CT-9800, 10 mm slice thickness). Results : vBMD was greater in men than women with no difference by race ( p < 0.001). Bone areas and area moments of inertia were also greater in men than women ( p < 0.001), with Black women having higher values than White women for TA and CA. Standardizing geometric parameters for body size differences by dividing by powers of femur length did not negate the sex difference for TA and MA. Significant differences ( p < 0.05) among the four groups also remained for I x and J . Mid-thigh muscle area was an independent contributor to TA in all groups (Std beta = 0.181-0.351, p < 0.05) as well as CA in women (Std beta = 0.246-0.254, p < 0.01) and CSMI in White women (Std beta = 0.175-0.185, p < 0.05). Further, muscle area was a significant contributor to vBMD in Black women. Conclusion : These results indicate that bone geometry and density of the femoral diaphysis differs primarily by sex, rather than race, in older well-functioning adults. In addition, site-specific muscle area appears to have a potential contributory role to bone geometry parameters, especially in women.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MCM-41 periodic mesoporous silicates with a high degree of structural ordering are synthesized and used as model adsorbents to study the isotherm prediction of nitrogen adsorption. The nitrogen adsorption isotherm at 77 K for a macroporous silica is measured and used in high-resolution alpha(s)-plot comparative analysis to determine the external surface area, total surface area and primary mesopore volume of the MCM-41 materials. Adsorption equilibrium data of nitrogen on the different pore size MCM-41 samples (pore diameters from 2.40 to 4.92 nm) are also obtained. Based on the Broekhoff and de Boer' thermodynamic analysis, the nitrogen adsorption isotherms for the different pore size MCM-41 samples are interpreted using a novel strategy, in which the parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting only the multilayer region prior to capillary condensation for C-16 MCM-41. Subsequently the entire isotherm, including the phase transition, is predicted for all the different pore size MCM-41 samples without any fitting. The results show that the prediction of multilayer adsorption and total adsorbed amount are in good agreement with the experimental isotherms. The predictions of the relative pressure corresponding to capillary equilibrium (coexistence) transition agree remarkably with experimental data on the adsorption branch even for hysteretic isotherms, confirming that this is the branch appropriate for pore size distribution analysis. The impact of pore radius on the adsorption film thickness and capillary coexistence pressure is also investigated, and found to agree with the experimental data. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The variation of the pore structure of several coal chars during gasification in air and carbon dioxide was studied by argon adsorption at 87 K and CO2 adsorption at 273 K. It is found that the surface area and volume of the small pores (10 Å for air gasification is constant over a wide range of conversion (>20%), while for CO2 gasification similar results are obtained using the total surface area. However, in the early stages of gasification (

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work consists in a study about the chemical activation of charred rice hulls using NaOH as the activation agent. The influence of the naturally-occurring silica was particularly evidenced. X-ray diffraction patterns showed the formation of sodium carbonate and silicates in the activated samples, whereas thermogravimetric curves revealed a strong reduction in the ash content of these samples after washing with water. Nitrogen adsorption data indicated a microporosity development only in the washed samples, with BET surface area values of 450 and 1380 m2/g achieved for the samples activated at 800 °C starting from the precursor with or without silica, respectively.