867 resultados para speaker clustering


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a realistic directional channel model that is an extension of the COST 273 channel model is presented. The model uses a cluster of scatterers and visibility region generation based strategy with increased realism, due to the introduction of terrain and clutter information. New approaches for path-loss prediction and line of sight modeling are considered, affecting the cluster path gain model implementation. The new model was implemented using terrain, clutter, street and user mobility information for the city of Lisbon, Portugal. Some of the model's outputs are presented, mainly path loss and small/large-scale fading statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actualmente tem-se observado um aumento do volume de sinais de fala em diversas aplicações, que reforçam a necessidade de um processamento automático dos ficheiros. No campo do processamento automático destacam-se as aplicações de “diarização de orador”, que permitem catalogar os ficheiros de fala com a identidade de oradores e limites temporais de fala de cada um, através de um processo de segmentação e agrupamento. No contexto de agrupamento, este trabalho visa dar continuidade ao trabalho intitulado “Detecção do Orador”, com o desenvolvimento de um algoritmo de “agrupamento multi-orador” capaz de identificar e agrupar correctamente os oradores, sem conhecimento prévio do número ou da identidade dos oradores presentes no ficheiro de fala. O sistema utiliza os coeficientes “Mel Line Spectrum Frequencies” (MLSF) como característica acústica de fala, uma segmentação de fala baseada na energia e uma estrutura do tipo “Universal Background Model - Gaussian Mixture Model” (UBM-GMM) adaptado com o classificador “Support Vector Machine” (SVM). No trabalho foram analisadas três métricas de discriminação dos modelos SVM e a avaliação dos resultados foi feita através da taxa de erro “Speaker Error Rate” (SER), que quantifica percentualmente o número de segmentos “fala” mal classificados. O algoritmo implementado foi ajustado às características da língua portuguesa através de um corpus com 14 ficheiros de treino e 30 ficheiros de teste. Os ficheiros de treino dos modelos e classificação final, enquanto os ficheiros de foram utilizados para avaliar o desempenho do algoritmo. A interacção com o algoritmo foi dinamizada com a criação de uma interface gráfica que permite receber o ficheiro de teste, processá-lo, listar os resultados ou gerar um vídeo para o utilizador confrontar o sinal de fala com os resultados de classificação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most financial and economic time-series display a strong volatility around their trends. The difficulty in explaining this volatility has led economists to interpret it as exogenous, i.e., as the result of forces that lie outside the scope of the assumed economic relations. Consequently, it becomes hard or impossible to formulate short-run forecasts on asset prices or on values of macroeconomic variables. However, many random looking economic and financial series may, in fact, be subject to deterministic irregular behavior, which can be measured and modelled. We address the notion of endogenous volatility and exemplify the concept with a simple business-cycles model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter reports on the magnetic properties of Ti(1-x)Co(x)O(2) anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play an important role in promoting long-range ferromagnetic order in the material studied in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO(2) anatase system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uma cidade amiga das pessoas idosas é um meio urbano onde são proporcionadas condições de saúde, segurança e participação que permitem às pessoas mais velhas envelhecerem activamente e viverem com dignidade. A nossa investigação, de natureza qualitativa e exploratória, teve como objectivo verificar se a cidade do Porto possui características de uma cidade amiga das pessoas idosas, na perspectiva de idosos residentes neste meio urbano. Para tal, realizamos dois focus groups com idosos habitantes nas Freguesias de S. Nicolau e Sé, seleccionados a partir de uma amostragem por conveniência, tendo sido utilizado um guião de entrevista constituído pelas categorias: espaços exteriores e edifícios; transportes; habitação; respeito e inclusão social; participação social; participação cívica e emprego; comunicação e informação; apoio comunitário e serviços de saúde. No nosso estudo, foi possível constatar que os participantes, apesar de se manifestarem genericamente satisfeitos com a sua vida na cidade do Porto e identificarem algumas características desse meio urbano que podem ser consideradas como amigas das pessoas idosas, descreveram um vasto conjunto de condições da cidade que limitam o seu quotidiano. Neste sentido, relativamente aos espaços exteriores, para além de os caracterizarem como inseguros quanto ao crime, reconheceram essencialmente limitações à sua mobilidade e segurança física, tais como os declives acentuados e as irregularidades do terreno de certos passeios, o curto período de tempo proporcionado para que sejam atravessadas algumas passadeiras e o aglomerar de lixo e estacionamento de veículos em locais destinados a peões. Adicionalmente, os participantes manifestaram-se insatisfeitos com o número de autocarros e paragens disponíveis na sua freguesia e identificaram nas habitações existentes na cidade do Porto um elevado nível de degradação estrutural e uma falta generalizada de condições de conforto, acessibilidade e protecção face a condições atmosféricas. Em oposição, foi possível verificar que a maior parte dos participantes se sente respeitado e incluído nas actividades e eventos realizados na sua comunidade. Da mesma forma, mostraram-se satisfeitos com a variedade de actividades em que têm oportunidade de participar, incluindo actividades de voluntariado e trabalho não remunerado. Aspectos característicos de uma cidade amiga do idoso, tais como a aglomeração geográfica dos edifícios públicos e lojas e a existência de serviços de apoio comunitário foram também identificados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polissema: Revista de Letras do ISCAP 2001/N.º 1- Tradução

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.