936 resultados para spatial-temporal constraints
Resumo:
In this manuscript, seasonal and spatial trends of water collected from two sampling places in the Preto River in the Turvo-Grande watershed were evaluated. Water samples were collected during June/07 to July/08 and parameters sulphate, total organic carbon, ammonia, conductivity, dissolved oxygen, temperature, dissolved total solids and nitrate were quantified. Seasonal trend indicated sanitary effluents as a point source of contamination in both sampling points. Vertical trends demonstrated that the Municipal Dam was not stratified and received a diffuse source of pollutants from flooding and agriculture runoffs. It was also verified that there is relatively fast ammonia consumption kinetics having a half-life time of 1.43 h which can explain the low ammonia concentrations found in these aquatic bodies.
Resumo:
This work aims to study spatial and seasonal variability of some chemical-physical parameters in the Turvo/Grande watershed, São Paulo State, Brazil. Water samples were taken monthly, 2007/07-2008/11, from fourteen sampling stations sited along the Turvo, Preto and Grande Rivers and its main tributaries. The Principal Component Analysis and hierarchical cluster analysis showed two distinct groups in this watershed, the first one associated for the places more impacted by domestic effluent (lower levels of dissolved oxygen in the studied region). The sampling places located to downstream (Turvo and Grande rivers) were discriminate by diffuse source of pollutants from flooding and agriculture runoffs in a second group.
Resumo:
Spatiotemporal pattern formation in reaction-transport systems takes place spontaneously when the system is kept far from thermodynamic equilibrium. Targets, reaction fronts, waves, spirals, spots and stripes are some typical examples of selforganized structuring. In electrochemical systems, monitoring spatiotemporal patterns of potential in the solid/liquid interface can be done by the use of equally distributed microprobes located close to the working electrode. However, the physical size of each probe can limit the spatial resolution and alter mass transport properties. In contrast, the direct measurement of discrete electrodes does not suffer from this limitation and allows the accurate manipulation of the spatial coupling through changes in resistors connected to the electric circuit. In this paper, the development of an electrochemical setup for multichannel data acquisition with spatiotemporal resolution is described, especially to monitor low levels of currents usually observed in the electro-oxidation of small organic molecules.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
A tuberculose bovina (BTB) é uma enfermidade causada pela infecção pelo Mycobacterium bovis que acomete o homem e diversas espécies de mamíferos. A BTB tem grande importância por causar prejuízos econômicos nas regiões infectadas e por seu impacto na saúde pública. Foi realizado inquérito epidemiológico no Estado da Bahia, entre 2008 e 2010, com o objetivo de estimar a prevalência e conhecer a distribuição espaço temporal da enfermidade. O Estado foi estratificado em quatro regiões, cada uma com características epidemiológicas e demográficas homogêneas representativas de formas de produção pecuária. Um total de 18.810 cabeças com idade superior a 2 anos foi amostrado em 1350 propriedades. O teste cervical comparativo foi aplicado em cada animal selecionado, sendo considerados positivos os animais reagentes positivos ou duas vezes inconclusivos. Latitude e Longitude foram tomadas para cada propriedade amostrada com o auxilio do aparelho de Global Positioning System (GPS). O teste de Cuzick-and-Edwards e a análise de rastreio espacial (spatial scan statistic) foram utilizados para identificar qualquer agrupamento espacial de BTB. A prevalência de rebanho na Bahia, indicando a proporção de propriedades foco, foi de 1,6% (IC 95%: 1,0% - 2,69% por região). Nenhuma evidência significativa (P<0.05) de aglomeração espacial ou clustering foi detectada, possivelmente devido à baixa prevalência da doença. Estes resultados sugerem que a BTB tem baixa prevalência no estado da Bahia e que, nestas condições epidemiológicas, os focos encontrados não podem ser explicados por fatores espacialmente estruturados.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
We examined the relationships between environmental variations in lotic ecosystems with the seasonal dynamics of macroalgae communities at different spatial scales: drainage basin of two rivers (Rio das Pedras and Rio Marrecas), shading (open and shaded stream segments), mesohabitat (riffles and pools), and microhabitats. Data collections were made on a monthly basis between January and December/2007. A total of 16 taxa were encountered (13 species and 3 vegetative groups). All of the biotic parameters (richness, abundance, diversity, equitability, and dominance) were found to be highly variable at all of the spatial scales evaluated. On the other hand, abiotic variables demonstrated differences only at mesohabitat (in terms of current velocity) and shaded habitat (in terms of irradiance) scales. The seasonality of the macroalgae community structure was strongly influenced by microhabitat variables (current velocity, substrate H', and irradiance), demonstrating their importance over time and at different scales. Regional variables (temperature, oxygen saturation, specific conductance, pH, and turbidity) were found to have little influence on the temporal dynamics of the macroalgae communities evaluated.
Resumo:
When two stimuli are presented simultaneously to an observer, the perceived temporal order does not always correspond to the actual one. In three experiments we examined how the location and spatial predictability of visual stimuli modulate the perception of temporal order. Thirty-two participants had to report the temporal order of appearance of two visual stimuli. In Experiment 1, both stimuli were presented at the same eccentricity and no perceptual asynchrony between them was found. In Experiment 2, one stimulus was presented close to the fixation point and the other, peripheral, stimulus was presented in separate blocks in two eccentricities (4.8º and 9.6º). We found that the peripheral stimulus was perceived to be delayed in relation to the central one, with no significant difference between the delays obtained in the two eccentricities. In Experiment 3, using three eccentricities (2.5º, 7.3º and 12.1º) for the presentation of the peripheral stimulus, we compared a condition in which its location was highly predictable with two other conditions in which its location was progressively less predictable. Here, the perception of the peripheral stimulus was also delayed in relation to the central one, with this delay depending on both the eccentricity and predictability of the stimulus. We argue that attentional deployment, manipulated by the spatial predictability of the stimulus, seems to play an important role in the temporal order perception of visual stimuli. Yet, under whichever condition of spatial predictability, basic sensory and attentional processes are unavoidably entangled and both factors must concur to the perception of temporal order.
Resumo:
Simultaneous measurements of EEG-functional magnetic resonance imaging (fMRI) combine the high temporal resolution of EEG with the distinctive spatial resolution of fMRI. The purpose of this EEG-fMRI study was to search for hemodynamic responses (blood oxygen level-dependent - BOLD responses) associated with interictal activity in a case of right mesial temporal lobe epilepsy before and after a successful selective amygdalohippocampectomy. Therefore, the study found the epileptogenic source by this noninvasive imaging technique and compared the results after removing the atrophied hippocampus. Additionally, the present study investigated the effectiveness of two different ways of localizing epileptiform spike sources, i.e., BOLD contrast and independent component analysis dipole model, by comparing their respective outcomes to the resected epileptogenic region. Our findings suggested a right hippocampus induction of the large interictal activity in the left hemisphere. Although almost a quarter of the dipoles were found near the right hippocampus region, dipole modeling resulted in a widespread distribution, making EEG analysis too weak to precisely determine by itself the source localization even by a sophisticated method of analysis such as independent component analysis. On the other hand, the combined EEG-fMRI technique made it possible to highlight the epileptogenic foci quite efficiently.
Resumo:
The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P < 0.05, ANOVA). Blue-yellow chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P < 0.05, ANOVA). Evoked potentials can be used reliably to evaluate chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus.
Resumo:
Vineyards vary over space and time, making geomatics technologies ideally suited to study terroir. This study applied geomatics technologies - GPS, remote sensing and GIS - to characterize the spatial variability at Stratus Vineyards in the Niagara Region. The concept of spatial terroir was used to visualize, monitor and analyze the spatial and temporal variability of variables that influence grape quality. Spatial interpolation and spatial autocorrelation were used to measure the pattern demonstrated by soil moisture, leaf water potential, vine vigour, soil composition and grape composition on two Cabernet Franc blocks and one Chardonnay block. All variables demonstrated some spatial variability within and between the vineyard block and over time. Soil moisture exhibited the most significant spatial clustering and was temporally stable. Geomatics technologies provided valuable spatial information related to the natural spatial variability at Stratus Vineyards and can be used to inform and influence vineyard management decisions.
Resumo:
Affiliation: Pascal Michel : Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Réalisé en cotutelle avec le laboratoire M2S de Rennes 2
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.