951 resultados para soil total digestion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil porosity is the fraction of total volume occupied by pores or voids measured at matric potential 0. To measure soil porosity, soil samples were taken from each plot using sample rings with an internal diameter of 57 mm and height of 40.5 mm (inner volume of Vs=100 cm3). The samples were placed on a sand bed box with water level set to allow saturation of the samples with water. After 48 h the samples were weighed (ms), oven dried at 105 °C and weighed again to determine the dry weight (md). We calculated soil porosity (n [%]) using the density of water (?w=1 g cm?3), n=100 ? (mw-md) / (?w?Vs). To account for the spatial variation of soil properties, three replicates were taken per plot, approximately 2, 3 and 4 weeks after the flood that occurred at the field site during June 2013. Data are the average soil porosity values per plot. All data where measured in the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data used in the study of the evolution of soils of Lake La Thuile catchment, in relation with the long sediment sequence of the lake. Data of pH, Loss On Ignition, Oxygen and Hydrogen Index (Rock-eval analyses) and mineral geochemistry (Portative XRF, Al2O3/TiO2 and K2O/TiO2 ratios) are available for each soil horizons that have been studied in the catchment. For sediments, data of Oxygen and Hydrogen Index (Rock-eval analyses), mineral geochemistry (Portative XRF, Al2O3/TiO2 and K2O/TiO2 ratios), erosion, soil evolution modelization and the ages are available according to depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grazing practices in rangelands are increasingly recognized as a management tool for environmental protection in addition to livestock production. Long term continuous grazing has been largely documented to reduce pasture productivity and decline the protective layer of soil surface affecting environmental protection. Time-controlled rotational grazing (TC grazing) as an alternative to continuous grazing is considered to reduce such negative effects and provides pasture with a higher amount of vegetation securing food for animals and conserving environment. To research on how the grazing system affects herbage and above ground organic materials compared with continuous grazing, the study was conducted in a sub-tropical region of Australia from 2001 to 2006. The overall results showed that herbage mass under TC grazing increased to 140% in 2006 compared with the first records taken in 2001. The outcomes were even higher (150%) when the soil is deeper and the slope is gentle. In line with the results of herbage mass, ground cover under TC grazing achieved significant higher percentages than continuous grazing in all the years of the study. Ground cover under TC grazing increased from 54% in 2003 to 73%, 82%, and 89% in 2004, 2005, and 2006, respectively, despite the fact that after the high yielding year of 2004 herbage mass declined to around 2.5 ton ha^(−1) in 2005 and 2006. Under continuous grazing however there was no significant increase over time comparable to TC grazing neither in herbage mass nor in ground cover. The successful outcome is largely attributed to the flexible nature of the management in which grazing frequency, durations and the rest periods were efficiently controlled. Such flexibility of animal presence on pastures could result in higher water retention and soil moisture condition promoting above ground organic material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates factors affecting anaerobic degradation of marine macro-algae (or seaweed), when used as a co-substrate with terrestrial plant biomass for the production of biogas. Using Laminaria digitata, a brown marine seaweed species and green peas, results showed that when only 2% of feedstock of a reactor treating the green peas at an organic loading rate (OLR) of 2.67 kg VS.m3.day-1 was replaced with the seaweed, methane production was disrupted, whilst acidogenesis, seemed to be less adversely affected, resulting in excessive volatile acids accumulation. Reactor stability was difficult to achieve thereafter. The experiment was repeated with a lower initial OLR of green peas of 0.70 kg VS.m3.day-1 before the addition of the seaweed. Although similar symptoms as in first trial were observed, process stability was restored through the control of OLR and alkalinity. These measures led to an increase in overall OLR of 1.25 kg VS.m3.day-1 comprising of 35% seaweed. This study has shown that certain seaweed constituents are more inhibitory to the methanogens even at trace concentrations than to the other anaerobic digestion microbial groups. Appropriate adaptation strategy, involving initial low proportion of the seaweed relative to the total OLR, and overall low OLR, is necessary to ensure effective adaptation of the microorganisms to the inhibitory constituents of seaweed. Where there is seasonal availability of seaweed, the results of this study suggest that a fresh adaptation or start-up strategy must be implemented during each cycle of seaweed availability in order to ensure sustainable process stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) in the oil and water industries is becoming common and a significant consumer of energy typically requiring 150–450 °C and or several hundred bar pressure [1] particularly in geological deposition. A biological carbon capture and conversion has been considered in conventional anaerobic digestion processes. The process has been utilised in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with complimentary increase of 30% in yield of methane, while the process was overall endothermic. Total consumption of energy (≈0.33 MJ l−1) was estimated for the carbonate solubility (0.1 mol l−1) in batched BCCU. This has a major influence on microbial composition in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the interactions between operating parameters and the mixed microbial culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion and unsustainable land use produce adverse effects on SOC content. Soil management techniques and corrections can be applied for soil recovery, especially, with afforestaion purposes. This study presents the short term effects on the application of different treatments on soil properties for soil included in several sets of closed plots located in the experimental area of Pinarillo (Nerja, Spain). The analysed soil properties were: PH, EC, organic carbon, total nitrogen and total carbon. In order to verify possible differences, we applied the test of Mann-Whitney U in corroboration with the previous homogeneity test of variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As poeiras urbanas, vulgarmente designadas na literatura por street dusts ou road dusts, são misturas heterogêneas de partículas minerais do solo e partículas resultantes do tráfego, formando um material com características únicas e específicas de cada local. Estas partículas, geralmente enriquecidas com elementos potencialmente tóxicos, quando inaladas ou ingeridas poderão ser um risco para a saúde das populações. Neste trabalho foram recolhidas 21 amostras de poeiras urbanas na cidade de Estarreja assim como amostras representativas de partículas relacionados com o tráfego (poeiras resultante do desgaste dos travões e das marcações dos pavimentos e estradas) com o objetivo de investigar a contribuição relativa destas partículas no comportamento geoquímico dessas amostras e o risco associado para as populações locais. Para a concretização do objetivo proposto caracterizou-se química e mineralogicamente as amostras de poeiras urbanas e as partículas relacionadas com o tráfego e avaliou-se a disponibilidade e bioacessibilidade para três elementos considerados potencialmente tóxicos (Cu, Pb e Zn) usando uma combinação de ensaios: (a) digestão ácida; (b) extração sequencial para identificar o fracionamento do Cu, Pb e Zn nas diferentes fases-suporte dos metais, e (c) bioaccessibilidade oral in vitro. Os resultados da análise química mostram que as poeiras dos travões apresentam concentrações elevadas em Fe, Cu, Zn, Mn, Ba, Sb, Cr e Ni sendo de referir diferenças composicionais significativas entre as amostras estudadas. A amostra de tinta contém teores elevados de Ba, Ca, Ti e Pb e também pode conter outros elementos tais como Co, Cr, Cu, Mn. Mineralogicamente constata-se que as amostras de poeiras dos travões tem uma composição mineralógica semelhante mostrando que são constituídas por uma elevada percentagem de material de baixa cristalinidade, grafite e óxidos/hidróxidos de Fe amorfos. A amostra de tinta de marcação dos pavimentos das estradas é composta por material mais cristalino do que a poeira dos travões e é essencialmente constituída por carbonatos (maioritariamente dolomite) e também por barite (em menor quantidade). Os resultados obtidos nas amostras de poeiras urbanas indicam a existência de associações de elementos que definem claramente a componente geogénica e/ou antropogénica e apontam para diferenças entre essas associações nas duas frações estudadas (250 m e 63 m). A heterogeneidade das poeiras é revelada pela existência de partículas com origem geogénica (por exemplo quartzo e aluminossilicatos), de partículas com características marcadamente antropogénicas (partículas enriquecidas em Fe, Pb, Zn e Cu) ou ainda de partículas com origem mista (óxidos de Fe e Ti). Os resultados da extração química seletiva sequencial permitiu concluir que, nas amostras em estudo, as fases de troca e ácido-solúveis são as fases suporte mais importantes para o Cu, Pb e Zn Os resultados dos ensaios de bioacessibilidade mostraram também que uma percentagem significativa de Cu, Pb e Zn total está disponível para absorção gástrica. Este estudo destaca também a necessidade de se caracterizar em detalhe as propriedades intrínsecas das partículas antrópicas presentes nas poeiras urbanas, de forma a compreender as variações da fração bioacessível nos diferentes elementos estudados assim como nas diferentes frações.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils ( model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil tillage with chisel ploughing is the conventional soil management system in chestnut stands for fruit production in Northern Portugal. A study was developed to assess the effects of three soil management systems on in situ soil N mineralization dynamics, tree nutrition status and fruit productivity, in a 50-yr old chestnut stand. The treatments were: conventional tillage with a chisel ploughing twice a year (CT), no-tillage with rainfed improved pasture with leguminous and grasses plants (NIP), and no-tillage with spontaneous herbaceous vegetation - natural pasture (NP). The CT treatment showed a strong increase of the soil N mineral concentration following soil disturbance by tillage, but the cumulative net N mineralized along the year was significantly lower (51.8 kg ha-1) than in the NIP (85.1 kg ha-1) treatment. The NP treatment (65.9 kg ha-1) did not cause a reduction in the soil N mineralization when compared to the CT treatment. The mineralization rate (g mineralized N kg-1 total N) in 2004 was about 26, 30 and 38 in the treatments CT, NP and NIP, respectively. Treatments showed different soil N dynamics, the proportion of mineralized NO3--N being lower in the NP (10-48%) than in CT and NIP treatments (53-74%). Our study indicates that no-tillage systems improve the tree nutrition status and enhance productivity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloid es, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus commun is L., Canavalia ensiform is, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1) and between the banana rows (location 2). There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support