960 resultados para soil leaching column chromatography
Resumo:
Collapsible soils are usually nonsaturated, low density, and metastable-structured soils that are known to exhibit a volume reduction following an episode of moisture increase or suction reduction. This paper describes the collapsible behavior of clayey sand based on controlled soil suction tests carried out on undisturbed samples from the city of Pereira Barreto, in the State of Sao Paulo, Brazil. Foundation settlements due to soil collapse are common in this region and occurred during the filling of the reservoir of the Tres Irmaos Dam, which induced the elevation of the groundwater table in different parts of Pereira Barreto. This paper shows that collapse strains depend on the stress and soil suction acting in the sample and that saturation is not necessary for a collapse to occur. The influence of soil suction, gradual wetting, and the wetting and drying cycle on the collapsible behavior of the soil is also shown and discussed.
Resumo:
This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper the dynamic solutions of two non-steady seepage problems are discussed. It is shown that the acceleration term in the equation of motion is important for a correct qualitative description of the flow.
Resumo:
The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the performance of fiber-cement corrugated sheets exposed to long-term weathering, exploring the effect of different environments on fiber-cement degradation. Fiber-cement corrugated sheets that had been exposed to weathering, and in place for more than 30-years, were collected from two different Brazilian cities (Sao Paulo and Criciuma). Mechanical properties (MOR, MOE and fracture toughness) were tested on samples removed from the corrugated sheets. Microstructure was evaluated by X-ray diffraction, SEM with EDS analysis, MIP and TG. The results show that the 37-year-old asbestos-cement corrugated sheets from Sao Paulo presented similar characteristics to those of the non-aged asbestos-cement readily available on the market place. Conversely, deterioration of the asbestos-cement from the industrial area of Criciuma is related to acidic attack, along with carbonation and leaching as a consequence of continued exposition to acid rain during several decades. This process resulted in higher porosity and lower mechanical strength, revealing that leaching mechanisms can have important effect on the performance of thin fiber-cement sheets. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This survey evaluated the presence of AFM(1) in human urine samples from a specific Brazilian population, as well as corn, peanut, and milk consumption measured by two types of food inquiry. Urine samples from donors who live in the city of Piracicaba, State of Sao Paulo, Brazil were analyzed to detect the presence of aflatoxin M(1) (AFM(1)). an aflatoxin B(1) metabolite, which may be used as aflatoxin B(1) exposure biomarker. The AFM(1) analysis was performed using immunoaffinity clean-up and detection by high-performance-liquid chromatography with fluorescence detector. A total of 69 samples were analyzed and 45 of them (65%) presented contaminations >= 1.8 pg ml(-1), which was the limit of quantification (LOQ). Seventy eight percent (n = 54) of the samples presented detectable concentrations of AFM(1) (>0.6 pg ml(-1)). The AFM(1) concentration among samples above LOQ ranged from 1.8 to 39.9 pg ml(-1). There were differences in food consumption profile among donors, although no association was found between food consumption and AFM(1) concentration in urine. The high frequency of positive samples suggests exposure of the populations studied to aflatoxins. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Establishing a few sites in which measurements of soil water storage (SWS) are time stable significantly reduces the efforts involved in determining average values of SWS. This study aimed to apply a new criterion the mean absolute bias error (MABE)-to identify temporally stable sites for mean SWS evaluation. The performance of MABE was compared with that of the commonly used criterion, the standard deviation of relative difference (SDRD). From October 2004 to October 2008, SWS of four soil layers (0-1.0, 1.0-2.0,2.0-3.0, and 3.0-4.0 m) was measured, using a neutron probe, at 28 sites on a hillslope of the Loess Plateau, China. A total of 37 SWS data sets taken over time were divided into two subsets, the first consisting of 22 dates collected during the calibration period from October 2004 to September 2006, and the second with 15 dates collected during the validation period from October 2006 to October 2008. The results showed that if a critical value of 5% for MABE was defined, more than half the sites were temporally stable for both periods, and the number of temporally stable sires generally increased with soil depth. Compared with SDRD, MABE was more suitable for the identification of time-stable sites for mean SS prediction. Since the absolute prediction error of drier sites is more sensitive to changes in relative difference in terms of mean SWS prediction, the sites of wet sectors should be preferable for mean SWS prediction for the same changes in relative difference.
Resumo:
The water-wind crisscross region of the Loess Plateau in China is comprised of 17.8 million hectares of highly erodible soil under limited annual rainfall. This requires a sustainable water balance for the restoration of dryland ecosystems to reduce and manage soil erosion. In this region, alfalfa has been one of the main legumes grown to minimize soil erosion. However, alfalfa yields were significantly lower in years of reduced rainfall suggesting that high water use and deep rooting alfalfa make it an unsustainable crop due to the long-term decline in soil water storage and productivity. Our objectives in this Study were to evaluate the soil water balance of Loess Plateau soils during vegetative restoration and to evaluate practices that prevent soil desiccation and promote ecosystem restoration and sustainability. Field observations of soil moisture recovery and soil erosion were carried out for five years after alfalfa was replaced with different crops and with bare soil. Soil water content changes in cropland, rangeland, and bare soil were tracked over several years, using a water balance approach. Results indicate that growing forages significantly reduced runoff and sediment transport. A forage-food-crop rotation is a better choice than other cropping systems for achieving sustainable productivity and preventing soil erosion and desiccation. However, economic considerations have prevented its widespread adoption by local farmers. Alternatively, this study recommends consideration of grassland crops or forest ecosystems to provide a sustainable water balance in the Loess Plateau of China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.