861 resultados para sociology of science
Resumo:
Classroom emotional climates are interrelated with students’ engagement with university courses. Despite growing interest in emotions and emotional climate research, little is known about the ways in which social interactions and different subject matter mediate emotional climates in preservice science teacher education classes. In this study we investigated the emotional climate and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the emotional climate during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the emotional climate. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented emotional climate data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral emotional climate. The structure of these interactions can inform the practice of other science educators who wish to produce positive emotional climates in their classes. The study also extends and explicates the construct of intensity of emotional climate.
Resumo:
This paper reports on an adaptation of Callon and Law’s (1995) hybrid collectif derived from research conducted on the usage of mobile phones and internet technologies among the iTadian indigenous people of the Cordillera region, northern Philippines. Results brings to light an indigenous digital collectif—an emergent effect from the translation of both human and non-human heterogeneous actors as well as pre-existent networks, such as: traditional knowledge and practices, kinship relations, the traditional exchange of goods, modern academic requisites, and advocacies for indigenous rights. This is evinced by the iTadian’s enrolment of internet and mobile phone technologies. Examples include: treating these technologies as an efficient communicative tool, an indicator of well-being, and a portable extension of affective human relationships. Alternatively, counter-enrolment strategies are also at play, which include: establishing rules of acceptable use on SMS texting and internet access based on traditional notions of discretion, privacy, and the customary treatment of the dead. Within the boundaries of this digital collectif reveal imbrications of pre-existing networks like traditional customs, the kinship system across geophysical boundaries, the traditional exchange of mail and other goods, and the advocacy of indigenous rights. These imbrications show that the iTadian digital collectif fluently configures itself to a variety of networked ontologies without losing its character.
Resumo:
Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.
Resumo:
In 2012, Queensland University of Technology (QUT) committed to the massive project of revitalizing its Bachelor of Science (ST01) degree. Like most universities in Australia, QUT has begun work to align all courses by 2015 to the requirements of the updated Australian Qualifications Framework (AQF) which is regulated by the Tertiary Education Quality and Standards Agency (TEQSA). From the very start of the redesigned degree program, students approach scientific study with an exciting mix of theory and highly topical real world examples through their chosen “grand challenge.” These challenges, Fukushima and nuclear energy for example, are the lenses used to explore science and lead to 21st century learning outcomes for students. For the teaching and learning support staff, our grand challenge is to expose all science students to multidisciplinary content with a strong emphasis on embedding information literacies into the curriculum. With ST01, QUT is taking the initiative to rethink not only content but how units are delivered and even how we work together between the faculty, the library and learning and teaching support. This was the desired outcome but as we move from design to implementation, has this goal been achieved? A main component of the new degree is to ensure scaffolding of information literacy skills throughout the entirety of the three year course. However, with the strong focus on problem-based learning and group work skills, many issues arise both for students and lecturers. A move away from a traditional lecture style is necessary but impacts on academics’ workload and comfort levels. Therefore, academics in collaboration with librarians and other learning support staff must draw on each others’ expertise to work together to ensure pedagogy, assessments and targeted classroom activities are mapped within and between units. This partnership can counteract the tendency of isolated, unsupported academics to concentrate on day-to-day teaching at the expense of consistency between units and big picture objectives. Support staff may have a more holistic view of a course or degree than coordinators of individual units, making communication and truly collaborative planning even more critical. As well, due to staffing time pressures, design and delivery of new curriculum is generally done quickly with no option for the designers to stop and reflect on the experience and outcomes. It is vital we take this unique opportunity to closely examine what QUT has and hasn’t achieved to be able to recommend a better way forward. This presentation will discuss these important issues and stumbling blocks, to provide a set of best practice guidelines for QUT and other institutions. The aim is to help improve collaboration within the university, as well as to maximize students’ ability to put information literacy skills into action. As our students embark on their own grand challenges, we must challenge ourselves to honestly assess our own work.
Resumo:
This chapter profiles research that has explored the role of affect in the teaching of science in Australia particularly on primary or elementary science education. Affect is a complex set of characteristics that relate to the interactions between an individual’s knowledge and emotional responses to a stimulus. Thus, there are many dimensions and theoretical frameworks that inform our understanding of how and why people behave in particular ways.
Resumo:
This paper reports and discusses a contentious result from an Australia-wide study of the influences on students' decisions about taking senior science subjects. As part of the Choosing Science study (Lyons and Quinn 2010) 3759 Year 10 students were asked to indicate which stage of their schooling (lower primary, upper primary, lower secondary, middle secondary) they had most enjoyed learning science. Crosstabulations of responses revealed that around 78% of students indicated that they had enjoyed learning science more in secondary than in primary school, and 55% enjoyed it the most during Years 9 and 10. The perception that school science was more enjoyable in high school was also found among students who did not intend taking science in Year 11, though to a lesser extent. These findings are unexpected and significant, challenging the prevailing view that enjoyment of school science steadily declines after primary school. The paper elaborates on the findings and suggests that the different conclusions arrived at by studies in this field may be due to the different methodologies employed.
Resumo:
This thesis studied the emotional climate (EC) of a pre-service science teachers' class in Bhutan. It examined the types of activities students engaged in and the relationship between the tutor and students whose interactions produced both positive and negative EC in the class. The major finding was that the activities involving students' presentations using video clips and models, group activity, and coteaching valenced the class EC positively. Negative EC was identified when the tutor ignored students' responses, during formal lectures, and when the tutor was uncertain of the subject knowledge. The replication of activities that produce positive EC by other Bhutanese tutors may improve the standard of science education in the country.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
Recruitment of highly qualified science and mathematics graduates has become a widespread strategy to enhance the quality of education in the field of STEM. However, attrition rates are very high suggesting preservice education programs are not preparing them well for the career change. We analyse the experiences of professionals who are scientists and have decided to change careers to become teachers. The study followed a group of professionals who undertook a one-year preservice teacher education course and were employed by secondary schools on graduation. We examined these teachers’ experiences through the lens of self-determination theory, which posits autonomy, confidence and relatedness are important in achieving job satisfaction. The findings indicated that the successful teachers were able to achieve a sense of autonomy and confidence, and, in particular, had established strong relationships with colleagues. However, the unique challenges facing career-change professionals were often overlooked by administrators and colleagues. Opportunities to build a sense of relatedness in their new profession were often absent. The failure to establish supportive relationships was decisive in some teachers leaving the profession. The findings have implications for both pre-service and professional inservice programs and the role that administrators play in supporting career-change teachers.
Resumo:
As detailed by a number of scholars (Emmison & Smith, 2000, 2012; Harrison, 1996, 2002, 2004), photographs and the process of photographing can provide fertile ground for sociological investigation. Examining the production of photography can tell us much about inclusion/omission and power/knowledge in a variety of social settings. Recently, some researchers have begun to utilise the participatory action research methodology, PhotoVoice, where people take and share photographs as a means of communicating and advocating on a specific topic. While medical sociologists have used PhotoVoice to communicate the impacts of disease in vulnerable populations (eg Burles, 2010), little social research has been done that combines PhotoVoice and older persons. This is interesting given the world’s population is ageing and the general lack of research that examines what daily life is like for older people living in aged care (Timonen & O’Dwyer, 2009). In response, a recent project tracked 10 participants who recently transitioned into living in residential aged care (RAC). The project combined the use of PhotoVoice methodology with repeated in-depth interviews. Residents were asked to orally and visually describe the positives and negative aspects of their daily lives. In the first instance, they shared the use of a RAC owned camera and later had the opportunity to access a camera for their sole use. Photographic analysis emphasised the value of centring the participant as an autonomous photographer in social research. In the photographs captured on a shared use camera, the photographs tended to depict predominately positive life stories (e.g. weekly morning tea outings, social activities). In comparison, the photographs captured on the sole use camera also described intimate but everyday activities, spaces, objects and people that frequented in their daily lives. Shifting the responsibility of the camera and photography solely to the participants resulted in the residents disrupting conventions of ‘suitable’ subject matter to photograph (Harrison, 2004) and in doing so, provided a much richer insight into what daily life is like in aged care.
Resumo:
Preservice teachers articulate the need for more teaching experiences for developing their practices, however, extending beyond existing school arrangements may present difficulties. Thus, it is important to understand preservice teachers’ development of pedagogical knowledge practices when in the university setting. This mixed-method study investigated 48 second-year preservice teachers’ development of pedagogical knowledge practices as a result of co-teaching primary science to peers. Data were collected through a survey, video-recorded lessons, extended written responses and researcher observations. The study showed how these preservice teachers demonstrated 9 of 11 pedagogical knowledge practices within the co-teaching arrangement. However, research is needed to determine the level of development on each pedagogical knowledge practice and how these practices can be transferred into authentic primary classroom settings.
Resumo:
Emotion researchers have grappled with challenging methodological issues in capturing emotions of participants in naturalistic settings such as school or university classrooms. Self-reporting methods have been used frequently, yet these methods are inadequate when used alone. We argue that the self-reporting methods of emotion diaries and cogenerative dialogues can be helpful in identifying in-the-moment emotions when used in conjunction with the microanalysis of video recordings of classroom events. We trace the evolution of our use of innovative self-reporting methods through three cases from our research projects, and propose new directions for our ongoing development and application of these methods in both school and university classrooms.
Resumo:
Science activities that evoke positive emotional responses make a difference to students’ emotional experience of science. In this study, we explored 8th Grade students’ discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of each lesson were analysed to identify individual student's emotions. Results from two representative students are presented as case studies. Using a theoretical perspective drawn from theories of emotions founded in sociology, two assertions emerged. First, during the demonstration activity, students experienced the emotions of wonder and surprise; second, during a laboratory activity, students experienced the intense positive emotions of happiness/joy. Characteristics of these activities that contributed to students’ positive experiences are highlighted. The study found that choosing activities that evoked strong positive emotional experiences, focused students’ attention on the phenomenon they were learning, and the activities were recalled positively. Furthermore, such positive experiences may contribute to students’ interest and engagement in science and longer term memorability. Finally, implications for science teachers and pre-service teacher education are suggested.
Resumo:
Perceptions of mentors' practices related to primary science teaching were obtained from final year preservice teachers after a 4-week practicum. Responses to a survey (n=59), constructed through literature-based practices and attributes of effective mentors, identified perceived strengths and weaknesses in the area of mentoring preservice teachers of primary science. Through exploratory factor analysis, this pilot study also tested the unidimensionality of mentoring practices and attributes assigned to categories (factors) that may characterise mentoring in primary science teaching. These suggested factors, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback had Cronbach alpha coefficients of internal consistency reliability of 0.93, 0.78, 0.94, 0.90, and 0.81 respectively. Survey responses indicated that mentors generally do not provide specific mentoring in primary science teaching. It is argued that science education reform requires the identification of factors and associated attributes and practices of mentoring primary science in order to effectively develop preservice teachers in primary science teaching.