920 resultados para singular potentials
Resumo:
Action potentials in juvenile and adult rat layer-5 neocortical pyramidal neurons can be initiated at both axonal and distal sites of the apical dendrite. However, little is known about the interaction between these two initiation sites. Here, we report that layer 5 pyramidal neurons are very sensitive to a critical frequency of back-propagating action potentials varying between 60 and 200 Hz in different neurons. Bursts of four to five back-propagating action potentials above the critical frequency elicited large regenerative potentials in the distal dendritic initiation zone. The critical frequency had a very narrow range (10–20 Hz), and the dendritic regenerative activity led to further depolarization at the soma. The dendritic frequency sensitivity was suppressed by blockers of voltage-gated calcium channels, and also by synaptically mediated inhibition. Calcium-fluorescence imaging revealed that the site of largest transient increase in intracellular calcium above the critical frequency was located 400–700 μm from the soma at the site for initiation of calcium action potentials. Thus, the distal dendritic initiation zone can interact with the axonal initiation zone, even when inputs to the neuron are restricted to regions close to the soma, if the output of the neuron exceeds a critical frequency.
Resumo:
We describe the use of singular value decomposition in transforming genome-wide expression data from genes × arrays space to reduced diagonalized “eigengenes” × “eigenarrays” space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.
Resumo:
We give conditions that rule out formation of sharp fronts for certain two-dimensional incompressible flows. We show that a necessary condition of having a sharp front is that the flow has to have uncontrolled velocity growth. In the case of the quasi-geostrophic equation and two-dimensional Euler equation, we obtain estimates on the formation of semi-uniform fronts.
Resumo:
The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed.
Resumo:
Embolism and refilling of vessels was monitored directly by cryomicroscopy of field-grown corn (Zea mays L.) roots. To test the reliability of an earlier study showing embolism refilling in roots at negative leaf water potentials, embolisms were counted, and root water potentials (Ψroot) and osmotic potentials of exuded xylem sap from the same roots were measured by isopiestic psychrometry. All vessels were full at dawn (Ψroot −0.1 MPa). Embolisms were first seen in late metaxylem vessels at 8 am. Embolized late metaxylem vessels peaked at 50% at 10 am (Ψroot −0.1 MPa), fell to 44% by 12 pm (Ψroot −0.23 MPa), then dropped steadily to zero by early evening (Ψroot −0.28 MPa). Transpiration was highest (8.5 μg cm−2 s−1) between 12 and 2 pm when the percentage of vessels embolized was falling. Embolized vessels were refilled by liquid moving through their lateral walls. Xylem sap was very low in solutes. The mechanism of vessel refilling, when Ψroot is negative, requires further investigation. Daily embolism and refilling in roots of well-watered plants is a normal occurrence and may be a component of an important hydraulic signaling mechanism between roots and shoots.
Resumo:
Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”
Resumo:
The present paper summarizes future needs in information and tools, technology, infrastructure, training, funding, and bioinformatics, to provide the genomic knowledge and tools for breeding and biotechnological goals in maize. The National Corn Genome Initiative (NCGA) has developed through actions taken by the National Corn Growers Association (NCGA) and participation in a planning process by institutions, companies, and organizations. At the web address for the NCGI, http://www.inverizon.com/ncgi, are detailed analyses of goals and costs, impact and value, and strategy and approaches. The NCGI has also produced an informative and perceptive video suitable for public groups or schools, about agricultural contributions to life and the place of maize in these contributions. High potential can be expected, from cross-application of knowledge obtained in maize and other cereals. Development of information and tools for all crops, whether monocots or dicots, will be gained through an initiative, and each crop will be positioned to advance with cost-effective parallels, especially for expressed sequences, markers, and physical mapping.
Resumo:
A Gouy-Chapman-Stern model has been developed for the computation of surface electrical potential (ψ0) of plant cell membranes in response to ionic solutes. The present model is a modification of an earlier version developed to compute the sorption of ions by wheat (Triticum aestivum L. cv Scout 66) root plasma membranes. A single set of model parameters generates values for ψ0 that correlate highly with published ζ potentials of protoplasts and plasma membrane vesicles from diverse plant sources. The model assumes ion binding to a negatively charged site (R− = 0.3074 μmol m−2) and to a neutral site (P0 = 2.4 μmol m−2) according to the reactions R− + IΖ ⇌ RIΖ−1 and P0 + IΖ ⇌ PIΖ, where IΖ represents an ion of charge Ζ. Binding constants for the negative site are 21,500 m−1 for H+, 20,000 m−1 for Al3+, 2,200 m−1 for La3+, 30 m−1 for Ca2+ and Mg2+, and 1 m−1 for Na+ and K+. Binding constants for the neutral site are 1/180 the value for binding to the negative site. Ion activities at the membrane surface, computed on the basis of ψ0, appear to determine many aspects of plant-mineral interactions, including mineral nutrition and the induction and alleviation of mineral toxicities, according to previous and ongoing studies. A computer program with instructions for the computation of ψ0, ion binding, ion concentrations, and ion activities at membrane surfaces may be requested from the authors.
Resumo:
Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.
Resumo:
Despite considerable evidence that ethanol can enhance chloride flux through the gamma-aminobutyric acid type A (GABA/A/) receptor-channel complex in several central neuron types, the effect of ethanol on hippocampal GABAergic systems is still controversial. Therefore, we have reevaluated this interaction in hippocampal pyramidal neurons subjected to local monosynaptic activation combined with pharmacological isolation of the various components of excitatory and inhibitory synaptic potentials, using intracellular current- and voltage-clamp recording methods in the hippocampal slice. In accord with our previous findings, we found that ethanol had little effect on compound inhibitory postsynaptic potentials/currents (IPSP/Cs) containing both GABA/A/ and GABA/B/ components. However, after selective pharmacological blockade of the GABA/B/ component of the IPSP (GABA/B/-IPSP/C) by CGP-35348, low concentrations of ethanol (22-66 mM) markedly enhanced the peak amplitude, and especially the area, of the GABA/A/ component (GABA/A/-IPSP/C) in most CA1 pyramidal neurons. Ethanol had no significant effect on the peak amplitude or area of the pharmacologically isolated GABA/B/-inhibitory postsynaptic current (IPSC). These results provide new data showing that activation of GABAB receptors can obscure ethanol enhancement of GABA/A/ receptor function in hippocampus and suggest that similar methods of pharmacological isolation might be applied to other brain regions showing negative or mixed ethanol-GABA interactions.
Resumo:
The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion.
Resumo:
The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape. Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons.
Resumo:
We prove global existence of nonnegative solutions to the one dimensional degenerate parabolic problems containing a singular term. We also show the global quenching phenomena for L1 initial datums. Moreover, the free boundary problem is considered in this paper.
Resumo:
The mitochondrial matrix flavoproteins electron transfer flavoprotein (ETF) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) are responsible for linking fatty acid β-oxidation with the main mitochondrial respiratory chain. Electrons derived from flavoprotein dehydrogenases are transferred sequentially through ETF and ETF-QO to ubiquinone and then into the respiratory chain via complex III. In this study, the effects of changes in ETF-QO redox potentials on its activity and the conformational flexibility of ETF were investigated. ETF-QO contains one [4Fe-4S]2+,1+ and one flavin adenine dinucleotide (FAD). In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. FAD redox potentials were measured by potentiometric titration probed by electron paramagnetic resonance (EPR) spectroscopy. The N338T and N338A mutations lowered the midpoint potentials, which resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e- catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore it is proposed that the iron-sulfur cluster is the immediate acceptor from ETF. It has been proposed that the αII domain of ETF is mobile, allowing promiscuous interactions with structurally different partners. Double electron-electron resonance (DEER) was used to measure the distance between spin labels at various sites and an enzymatically reduced FAD cofactor in Paracoccus denitrificans ETF. Two or three interspin distance distributions were observed for spin-labels in the αI (A43C) and βIII (A111C) domains, but only one is observed for a label in the βII (A210C) domain. This suggests that the αII domain adopts several stable conformations which may correspond to a closed/inactive conformation and an open/active conformation. An additional mutation, E162A, was introduced to increase the mobility of the αII domain. The E162A mutation doubled the activity compared to wild-type and caused the distance distributions to become wider. The DEER method has the potential to characterize conformational changes in ETF that occur when it interacts with various redox partners.
Resumo:
Existe un interés considerable en hallar métodos que nos ayuden a saber cuándo una persona miente y cuándo dice la verdad desde un punto de vista forense. Actualmente, una de las líneas de investigación se inclina hacia el uso de potenciales relacionados con eventos. Se pretende hacer una revisión de los artículos que estudian estos procedimientos mediante distintos métodos: propiedades, fiabilidad, validez y limitaciones. Los resultados indican tasas de acierto en la discriminación de culpables en un rango de 7 al 100 por ciento, y en la de inocentes de 31 a 100 por ciento. La gran variabilidad y la posibilidad de “falsear” las respuestas llevan a cuestionar la inexactitud utilizada en algunos círculos mediáticos respecto a las cualidades y finalidades de dicha prueba. Se concluye la necesidad de profundizar más la posibilidad de que esta prueba sea utilizada con fines forenses.