981 resultados para serum insulin
Resumo:
The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.
Resumo:
OBJECTIVE: Vitamin D deficiency is frequent in the general population and might be even more prevalent among populations with kidney failure. We compared serum vitamin D levels, vitamin D insufficiency/deficiency status, and vitamin D level determinants in populations without chronic kidney disease (CKD) and with CKD not requiring renal dialysis. DESIGN AND METHODS: This was a cross-sectional, multicenter, population-based study conducted from 2010 to 2011. Participants were from 10 centers that represent the geographical and cultural diversity of the Swiss adult population (≥15 years old). INTERVENTION: CKD was defined using estimated glomerular filtration rate and 24-hour albuminuria. Serum vitamin D was measured by liquid chromatography-tandem mass spectrometry. Statistical procedures adapted for survey data were used. MAIN OUTCOME MEASURE: We compared 25-hydroxy-vitamin D (25(OH)D) levels and the prevalence of vitamin D insufficiency/deficiency (serum 25(OH)D < 30 ng/mL) in participants with and without CKD. We tested the interaction of CKD status with 6 a priori defined attributes (age, sex, body mass index, walking activity, serum albumin-corrected calcium, and altitude) on serum vitamin D level or insufficiency/deficiency status taking into account potential confounders. RESULTS: Overall, 11.8% (135 of 1,145) participants had CKD. The 25(OH)D adjusted means (95% confidence interval [CI]) were 23.1 (22.6-23.7) and 23.5 (21.7-25.3) ng/mL in participants without and with CKD, respectively (P = .70). Vitamin D insufficiency or deficiency was frequent among participants without and with CKD (75.3% [95% CI 69.3-81.5] and 69.1 [95% CI 53.9-86.1], P = .054). CKD status did not interact with major determinants of vitamin D, including age, sex, BMI, walking minutes, serum albumin-corrected calcium, or altitude for its effect on vitamin D status or levels. CONCLUSION: Vitamin D concentration and insufficiency/deficiency status are similar in people with or without CKD not requiring renal dialysis.
Resumo:
Secretory component (SC) was detected by the radioactive single radial diffusion technique in nearly all sera examined. The SC was shown to be associated with polymeric serum IgA. The mean level of secretory IgA (SIgA) in normal sera from India, Africa and Europe was about 0.03 to 0.04 mg/ml. The mean level was elevated in patients with a variety of disorders involving secretory surfaces (e.g., acute bacterial enterocolitis or respiratory tract carcinoma), but also in disorders with no known involvement of secretory surfaces. The highest levels were seen in lactating women, with a mean level five times higher than that in the general population. SIgA was also found at lower levels in cord serum, serum from breast-fed newborns and serum from children 3 to 10 years old.
Resumo:
Role of GLP-1 and GIP in beta cell compensatory responses to beta cell attack and insulin resistance were examined in C57BL/6 mice lacking functional receptors for GLP-1 and GIP. Mice were treated with multiple low dose streptozotocin or hydrocortisone. Islet parameters were assessed by immunohistochemistry and hormone measurements were determined by specific enzyme linked immunoassays. Wild-type streptozotocin controls exhibited severe diabetes, irregularly shaped islets with lymphocytic infiltration, decreased Ki67/TUNEL ratio with decreased beta cell and increased alpha cell areas. GLP-1 and GIP were co-expressed with glucagon and numbers of alpha cells mainly expressing GLP-1 were increased. In contrast, hydrocortisone treatment and induction of insulin resistance increased islet numbers and area, with enhanced beta cell replication, elevated mass of beta and alpha cells, together with co-expression of GLP-1 and GIP with glucagon in islets. The metabolic responses to streptozotocin in GLP-1RKO and GIPRKO mice were broadly similar to C57BL/6 controls, although decreases in islet numbers and size were more severe. In contrast, both groups of mice lacking functional incretin receptors displayed substantially impaired islet adaptations to insulin resistance induced by hydrocortisone, including marked curtailment of expansion of islet area, beta cell mass and islet number. Our observations cannot be explained by simple changes in circulating incretin concentrations, suggesting that intra-islet GLP-1 and GIP make a significant contribution to islet adaptation, particularly expansion of beta cell mass and compensatory islet compensation to hydrocortisone and insulin resistance.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon grown in the presence of 3 ng/ml (5 X 10(-10) M) epidermal growth factor (EGF) until day 12 showed 2- to 3-fold increased activities in the two glial enzymes, glutamine synthetase (GLU-S) and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). This effect was concentration-dependent, with maximal stimulation in cultures treated daily with 3 ng/ml EGF. Addition of EGF during the first 10 culture days was sufficient to produce a maximal stimulation of both GLU-S and CNPase on day 19, whereas treatments starting on day 12 were ineffective. The stimulation of GLU-S preceded that of CNPase. The EGF-induced increase in GLU-S activity was not directly dependent on the presence of insulin, triiodothyronine, or hydrocortisone in the medium, whereas insulin was required for the stimulation of CNPase. A single dose of 5 ng/ml EGF on day 2 caused a slight but significant decrease in DNA synthesis after day 6. The present results indicate that in serum-free aggregating cell cultures of fetal rat telencephalon EGF partially inhibits DNA synthesis, and stimulates an early step in glial differentiation.
Resumo:
The signaling pathway that regulates glucose-stimulated insulin secretion depends on glucose metabolism, which is itself controlled by glucokinase. In a recent issue of Cell, show that altering N-glycosylation of the GLUT2 glucose transporter prevents its anchoring and retention at the cell surface; this impairs glucose uptake and insulin secretion.
Resumo:
JIP-1 is a cytoplasmic inhibitor of the c-Jun amino-terminal kinase activated pathway recently cloned from a mouse brain cDNA library. We report herein the expression cloning of a rat cDNA encoding a JIP-1-related nuclear protein from a pancreatic beta-cell cDNA library that we named IB1 for Islet-Brain 1. IB1 was isolated by its ability to bind to GTII, a cis-regulatory element of the GLUT2 promoter. The IB1 cDNA encodes a 714-amino acid protein, which differs from JIP-1 by the insertion of 47 amino acids in the carboxyl-terminal part of the protein. The remaining 667 amino acids are 97% identical to JIP-1. The 47-amino acid insertion contains a truncated phosphotyrosine interaction domain and a putative helix-loop-helix motif. Recombinant IB1 (amino acids 1-714 and 280-714) was shown to bind in vitro to GTII. Functionally IB1 transactivated the GLUT2 gene. IB1 was localized within the cytoplasm and the nucleus of insulin-secreting cells or COS-7 cells transfected with an expression vector encoding IB1. Using a heterologous GAL4 system, we localized an activation domain of IB1 within the first 280 amino acids of the protein. These data demonstrate that IB1 is a DNA-binding protein related to JIP-1, which is highly expressed in pancreatic beta-cells where it functions as a transactivator of the GLUT2 gene.
Resumo:
OBJECTIVE: Losartan has been shown to increase urinary uric acid excretion and hence to lower serum uric acid levels. The purposes of the present study were: (1) to evaluate the effects of losartan on serum uric acid in hypertensive patients with hyperuricemia and gout, (2) to compare the effects of losartan with those of irbesartan, another angiotensin II receptor antagonist and (3) to evaluate whether losartan 50 mg b.i.d. has a greater impact on serum uric acid levels than losartan 50 mg once a day. METHODS: Thirteen hypertensive patients with hyperuricaemia and gout completed this prospective, randomized, double-blind, cross-over study. Uric acid-lowering drugs were stopped 3 weeks before the beginning of the study. Patients were randomized to receive either losartan 50 mg or irbesartan 150 mg once a day, for 4 weeks. During this phase, a placebo was given in the evening. After 4 weeks, the dose was increased to losartan 50 mg b.i.d., or irbesartan 150 mg b.i.d. for another 4 week period. Subsequently, the patients were switched to the alternative treatment modality. Enalapril (20 mg o.d.) was given during the run-in period and between the two treatment phases. Serum and urinary uric acid were measured at the beginning and at the end of each treatment phase. RESULTS: Our results show that losartan 50 mg once daily decreased serum uric acid levels from 538 +/- 26 to 491 +/- 20 micromol/l (P < 0.01). Irbesartan had no effect on serum uric acid. Increasing the dose of losartan from 50 mg o.d. to 50 mg twice a day, did not further decrease serum uric acid. This may in part be due to a low compliance to the evening dose as measured with an electronic device. Indeed, whatever the prescribed drug, the mean compliance of the evening dose was always significantly lower than that of the morning dose. The uricosuric effect of losartan appears to decrease with time when a new steady state of lower serum uric acid is reached. CONCLUSIONS: In contrast to irbesartan, losartan was uricosuric and decreased serum uric acid levels. Losartan 50 mg b.i.d. did not produce a greater fall in serum uric acid than losartan once a day. Losartan might be a useful therapeutic tool to control blood pressure and reduce serum uric acid levels in hypertensive patients with hyperuricaemia and gout.
Resumo:
Macrophage migration inhibitory factor (MIF) is an important regulator of glucose homeostasis. In pancreatic beta-cells, MIF expression is regulated by glucose and its secretion potentiates the glucose-induced insulin secretion. The molecular mechanisms by which glucose mediates its effect on MIF expression are not elucidated. Herein, we report that incubating the differentiated insulin-secreting cell line INS-1 in high glucose concentration increases MIF transcriptional activity as well as the reporter gene activity driven by the -1033 to +63 bp fragment of the MIF promoter. A minimal region located between -187 and -98 bp of this promoter sequence contributes both to basal activity and glucose-responsiveness of the gene. Within this promoter region, two cis-binding sequences were identified by mobility shift assays and footprinting experiments. Both cis-elements interact with nuclear proteins expressed specifically in insulin-secreting cells. In conclusion, we identified a minimal region of the MIF promoter which contributes to the glucose stimulation of the mif gene in insulin-secreting cells.
Resumo:
Rapport de synthèse : Introduction : La croissance foetale infra-utérine dépend d'un grand nombre de facteurs maternels, placentaires et foetaux. Une inadéquation d'un ou plusieurs de ces facteurs peut induire un retard de croissance infra-utérin (RCIU) ou au contraire une macrosomie. Les principales causes de RCIU comprennent les infections maternelles, l'éclampsie, les cardiovasculopathies maternelles, la toxicomanie, les malformations foetales et les insuffisances placentaires. Les facteurs endocriniens constituent un petit pourcentage des causes de RCIU, mais méritent que l'on s'y intéresse de plus près. Les facteurs hormonaux les plus importants pour la croissance fatale sont l'insuline et les insuline-like growth factors (IGFs) et non l'hormone de croissance (GH) qui joue un rôle majeur dans la croissance postnatale. Notre attention s'est portée sur IGF-1 qui joue un rôle important dans la croissance intrautérine. Sa biodisponibilité dépend de plusieurs protéines plasmatiques, les IGF-binding proteins (IGFBP 1 à 9). IGFBP-3 est la principale de ces IGFBPs, autant d'un point de vue quantitatif que fonctionnel. Nous avons cherché à déterminer si les concentrations d'IGF-1 et d'IGFBP-3 dans le liquide amniotique au début du deuxième trimestre étaient prédictives de la croissance infra-utérine. Les gènes codant pour IGF-1 et IGFBP-3 contenant certaines séquences polymorphiques, nous avons également étudié leur influence sur la croissance foetale. L'analyse du liquide amniotique présente l'avantage de pouvoir être effectuée dès la 14ème semaine d'aménorrhée alors que la biométrie foetale échographique ne permet pas à ce stade de déceler des anomalies de la croissance infra-utérine. Méthode : Nous avons analysé des échantillons de liquide amniotique prélevés entre la 14ème et la 18ème semaine de grossesse chez 196 patientes. Les concentrations d'IGF-1 et d'IGFBP-3 ont été dosées par ELISA, les polymorphismes analysés par PCR. Ces résultats ont été ensuite analysés en fonction du poids de naissance des nouveaux-nés, répartis en trois groupes normal pour l'âge gestationnel (AGA), petit pour l'âge gestationnel (SGA) et grand pour l'âge gestationnel (LGA). Résultats : Les concentrations d'IGFBP3 dans le liquide amniotique sont significativement plus élevées (p = 0.030) dans le groupe SGA par rapport au groupe AGA, d'autant plus quand les taux sont ajustés en fonction de paramètres tels que l'âge gestationnel lors de l'amniocentèse (ANCOVA analysis : p = 0.009). La distribution du polymorphisme VNTR (variable number of tandem repeat) dans la région promotrice d'IGF-1 au sein du groupe SGA est significativement différente de celle du groupe AGA (p = 0.029). En effet, la fréquence de l'association allélique 19CA/20CA est diminuée dans le groupe SGA. Nous n'avons pas identifié de différence de distribution des séquences polymorphiques d'IGFBP-3 entre les différents groupes. Conclusion : Une concentration élevée d'IGFBP-3 dans le liquide amniotique au début du deuxième trimestre est associée à un risque plus élevé de retard de croissance alors que l'association allélique 19CA/20CA dans la région polymorphique IGF-1 VNTR est un facteur protecteur.
Resumo:
BACKGROUND & AIMS: In the last decade, pegylated interferon-α (PegIFN-α) plus ribavirin (RBV) was the standard treatment of chronic hepatitis C for genotype 1, and it remains the standard for genotypes 2 and 3. Recent studies reported associations between RBV-induced anemia and genetic polymorphisms of concentrative nucleoside transporters such as CNT3 (encoded by SLC28A3) and inosine triphosphatase (encoded by ITPA). We aimed at studying genetic determinants of RBV kinetics, efficacy and treatment-associated anemia. METHODS: We included 216 patients from two Swiss study cohorts (61% HCV genotype 1, 39% genotypes 2 or 3). Patients were analyzed for SLC28A2 single nucleotide polymorphism (SNP) rs11854484, SLC28A3 rs56350726, and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101, and followed for treatment-associated hemoglobin changes and sustained virological response (SVR). In 67 patients, RBV serum levels were additionally measured during treatment. RESULTS: Patients with SLC28A2 rs11854484 genotype TT had higher dosage- and body weight-adjusted RBV levels than those with genotypes TC or CC (p=0.02 and p=0.06 at weeks 4 and 8, respectively). ITPA SNP rs1127354 was associated with hemoglobin drop ≥3 g/dl during treatment, in genotype (relative risk (RR)=2.1, 95% CI 1.3-3.5) as well as allelic analyses (RR=2.0, 95%CI 1.2-3.4). SLC28A3 rs56350726 was associated with SVR in genotype (RR=2.2; 95% CI 1.1-4.3) as well as allelic analyses (RR=2.0, 95% CI 1.1-3.4). CONCLUSIONS: The newly identified association between RBV serum levels and SLC28A2 rs11854484 genotype, as well as the replicated association of ITPA and SLC28A3 genetic polymorphisms with RBV-induced anemia and treatment response, may support individualized treatment of chronic hepatitis C and warrant further investigation in larger studies.
Resumo:
The transmembrane protein HER2 is over-expressed in approximately 15% of invasive breast cancers as a result of HER2 gene amplification. HER2 proteolytic cleavage (HER2 shedding) generates soluble truncated HER2 molecules that include only the extracellular domain and the concentration of which can be measured in the serum fraction of blood. HER2 shedding also generates a constitutively active truncated intracellular receptor of 95kDa (p95(HER2)). Another soluble truncated HER2 protein (Herstatin), which can also be found in serum, is the product of an alternatively spliced HER2 transcript. Recent preclinical findings may provide crucial insights into the biological and clinical relevance of increased sHER2 concentrations for the outcome of HER2-positive breast cancer and sensitivity to trastuzumab and lapatinib treatment. We present here the most recent findings about the role and biology of sHER2 based on data obtained using a standardized test, which has been cleared by FDA in 2000, for measuring sHER2. This test includes quality control assessments and has been already widely used to evaluate the clinical utility of sHER2 as a biomarker in breast cancer. We will describe in detail data concerning the assessment of sHER2 as a surrogate maker to optimize the evaluation of the HER2 status of a primary tumor and as a prognosis and predictive marker of response to therapies, both in early and metastatic breast cancer.
Resumo:
Adiponectin, which plays a pivotal role in metabolic liver diseases, is reduced in concentration in patients with NASH (non-alcoholic steatohepatitis). The aim of the present study was to determine adiponectin concentrations in patients with different forms and stages of chronic liver diseases. Serum adiponectin concentrations were measured in 232 fasting patients with chronic liver disease: 64 with NAFLD (non-alcoholic fatty liver disease), 123 with other chronic liver disease (e.g. viral hepatitis, n=71; autoimmune disease, n=18; alcohol-induced liver disease, n=3; or elevated liver enzymes of unknown origin, n=31) and 45 with cirrhosis. Circulating adiponectin levels were significantly lower in patients with NAFLD in comparison with patients with other chronic liver disease (4.8+/-3.5 compared with 10.4+/-6.3 microg/ml respectively; P<0.0001). Circulating adiponectin levels were significantly higher in patients with cirrhosis in comparison with patients without cirrhosis (18.6+/-14.5 compared with 8.4+/-6.1 microg/ml respectively; P<0.0001). Adiponectin concentrations correlated negatively with body weight (P<0.001), serum triacylglycerols (triglycerides) (P<0.001) and, in women, with BMI (body mass index) (P<0.001). Adiponectin concentrations correlated positively with serum bile acids (P<0.001), serum hyaluronic acid (P<0.001) and elastography values (P<0.001). Adiponectin levels were decreased in patients with NAFLD. In conclusion, adiponectin levels correlate positively with surrogate markers of hepatic fibrosis (transient elastography, fasting serum bile acids and hyaluronate) and are significantly elevated in cases of cirrhosis.