866 resultados para semantic leveling
Resumo:
Semantic relations are an important element in the construction of ontologies and models of problem domains. Nevertheless, they remain fuzzy or under-specified. This is a pervasive problem in software engineering and artificial intelligence. Thus, we find semantic links that can have multiple interpretations in wide-coverage ontologies, semantic data models with abstractions that are not enough to capture the relation richness of problem domains, and improperly structured taxonomies. However, if relations are provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them. In this paper we present some insightful issues about the modeling, representation and usage of relations including the available taxonomy structuring methodologies as well as the initiatives aiming to provide relations with precise semantics. Moreover, we explain and propose the control of relations as a key issue for the coherent construction of ontologies.
URIs and Intertextuality: Incumbent Philosophical Commitments in the Development of the Semantic Web
Resumo:
Examines two commitments inherent in Resource Description Framework (RDF): intertextuality and rationalism. After introducing how rationalism has been studied in knowledge organization, this paper then introduces the concept of bracketed-rationalism. This paper closes with a discussion of ramifications of intertextuality and bracketed rationalism on evaluation of RDF.
Resumo:
Many years have passed since Berners-Lee envi- sioned the Web as it should be (1999), but still many information professionals do not know their precise role in its development, especially con- cerning ontologies –considered one of its main elements. Why? May it still be a lack of under- standing between the different academic commu- nities involved (namely, Computer Science, Lin- guistics and Library and Information Science), as reported by Soergel (1999)? The idea behind the Semantic Web is that of several technologies working together to get optimum information re- trieval performance, which is based on proper resource description in a machine-understandable way, by means of metadata and vocabularies (Greenberg, Sutton and Campbell, 2003). This is obviously something that Library and Information Science professionals can do very well, but, are we doing enough? When computer scientists put on stage the ontology paradigm they were asking for semantically richer vocabularies that could support logical inferences in artificial intelligence as a way to improve information retrieval systems. Which direction should vocabulary development take to contribute better to that common goal? The main objective of this paper is twofold: 1) to identify main trends, issues and problems con- cerning ontology research and 2) to identify pos- sible contributions from the Library and Information Science area to the development of ontologies for the semantic web. To do so, our paper has been structured in the following manner. First, the methodology followed in the paper is reported, which is based on a thorough literature review, where main contributions are analysed. Then, the paper presents a discussion of the main trends, issues and problems concerning ontology re- search identified in the literature review. Recom- mendations of possible contributions from the Library and Information Science area to the devel- opment of ontologies for the semantic web are finally presented.
Resumo:
This paper describes a conceptual framework and meth- odology for managing scheme versioning for the Semantic Web. The first part of the paper introduces the concept of vocabulary encoding schemes, distinguished from metadata schemas, and discusses the characteristics of changes in schemes. The paper then presents a proposal to use a value record–similar to a term record in thesaurus management techniques–to manage scheme versioning challenges for the Semantic Web. The con-clusion identifies future research directions.
Resumo:
Question Answering systems that resort to the Semantic Web as a knowledge base can go well beyond the usual matching words in documents and, preferably, find a precise answer, without requiring user help to interpret the documents returned. In this paper, the authors introduce a Dialogue Manager that, through the analysis of the question and the type of expected answer, provides accurate answers to the questions posed in Natural Language. The Dialogue Manager not only represents the semantics of the questions, but also represents the structure of the discourse, including the user intentions and the questions context, adding the ability to deal with multiple answers and providing justified answers. The authors’ system performance is evaluated by comparing with similar question answering systems. Although the test suite is slight dimension, the results obtained are very promising.
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations
Resumo:
This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations.
Resumo:
The ability of agents and services to automatically locate and interact with unknown partners is a goal for both the semantic web and web services. This, \serendipitous interoperability", is hindered by the lack of an explicit means of describing what services (or agents) are able to do, that is, their capabilities. At present, informal descriptions of what services can do are found in \documentation" elements; or they are somehow encoded in operation names and signatures. We show, by ref- erence to existing service examples, how ambiguous and imprecise capa- bility descriptions hamper the attainment of automated interoperability goals in the open, global web environment. In this paper we propose a structured, machine readable description of capabilities, which may help to increase the recall and precision of service discovery mechanisms. Our capability description draws on previous work in capability and process modeling and allows the incorporation of external classi¯cation schemes. The capability description is presented as a conceptual meta model. The model supports conceptual queries and can be used as an extension to the DAML-S Service Pro¯le.
Resumo:
The next phase envisioned for the World Wide Web is automated ad-hoc interaction between intelligent agents, web services, databases and semantic web enabled applications. Although at present this appears to be a distant objective, there are practical steps that can be taken to advance the vision. We propose an extension to classical conceptual models to allow the definition of application components in terms of public standards and explicit semantics, thus building into web-based applications, the foundation for shared understanding and interoperability. The use of external definitions and the need to store outsourced type information internally, brings to light the issue of object identity in a global environment, where object instances may be identified by multiple externally controlled identification schemes. We illustrate how traditional conceptual models may be augmented to recognise and deal with multiple identities.
Resumo:
The role of sustainability in urban design is becoming increasingly important as Australia’s cities continue to grow, putting pressure on existing infrastructure such as water, energy and transport. To optimise an urban design many different aspects such as water, energy, transport, costs need to be taken into account integrally. Integrated software applications assessing urban designs on a large variety of aspects are hardly available. With the upcoming next generation of the Internet often referred to as the Semantic Web, data can become more machine-interpretable by developing ontologies that can support the development of integrated software systems. Software systems can use these ontologies to perform an intelligent task such as assessing an urban design on a particular aspect. When ontologies of different applications are aligned, they can share information resulting in interoperability. Inference such as compliancy checks and classifications can support aligning the ontologies. A proof of concept implementation has been made to demonstrate and validate the usefulness of machine interpretable ontologies for urban designs.
Resumo:
Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.
Resumo:
To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.
Resumo:
In this third Quantum Interaction (QI) meeting it is time to examine our failures. One of the weakest elements of QI as a field, arises in its continuing lack of models displaying proper evolutionary dynamics. This paper presents an overview of the modern generalised approach to the derivation of time evolution equations in physics, showing how the notion of symmetry is essential to the extraction of operators in quantum theory. The form that symmetry might take in non-physical models is explored, with a number of viable avenues identified.
Resumo:
Following an early claim by Nelson & McEvoy suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and they appear to be capable of substantial agreement with pre-existing experimental data. The paper concludes with a discussion of some experiments that will be performed in order to test these models.