974 resultados para self revelation mechanism
Resumo:
The species Rhabdodendron macrophyllum (Spr. ex Benth.) Hub. (Rhabdondendraceae) was observed in order to determine its pollination mechanism. Although it flowers around the year, there are flowering peaks when it is visited by several species of pollen-gathering bees. The principal floral visitors are two species of trigonid bees and one Melipona. The Melipona and one other visitor used the buzz method to extract pollen from the longitudinally dehiscent anthers. The trigonid bees collected pollen without buzzing. The flowers open around 6:00 a.m. and are available to the bess until about 10:30 a.m. Pollinator exclusion experiments showed that this species sets fruit equally by self fertilization.
Resumo:
The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)
Resumo:
Nowadays, organizations face a constant need for adaptability, increasing the importance of change management. Our study focuses of how empowering leadership influences intentions to resist future changes, mediated by the effects of psychological and structural empowerment. From the responses of the two questionnaires (N1=230; Ntf=113), we found that empowering leadership fosters psychological and structural empowerment. Structural empowerment was the main driver in reducing intentions to resist future change when an employee has high organization-based self-esteem. Our findings add to the literature by examining how we can anticipate and manage change under an empowering context, building on social exchange and uncertainty reduction theories
Resumo:
This project aims to provide feasible solutions to improve customer´s Help Area at Continente Online. The goal is to increase satisfaction and loyalty by reducing the main causes that lead customers to appeal to Call Center or abandon the website. The pursued solution is the implementation of Web Self-Service and the vision taken is focused not only on providing customers basic help tools but also innovate with international best practices to sustain Sonae MC´s present and future market leader position. Customer´s feedback, costs and impact are taken in consideration to find the best fit for the company.
Resumo:
The centrosome is the major organizing center in a cell, composed by two centrioles, one mother and one daughter, and surrounded by a pericentriolar material, which nucleates microtubules. Centriole duplication and segregation is tightly coupled to cell cycle, which guarantees that centriole number is maintained over generations. During the somatic cell cycle, a pair of centrioles duplicates, after which each daughter cell receives a pair, forming a closed cycle. However, during fertilization, if both cells were to contribute with their pair of centrioles, gamete fusion would result in the double of the normal centriole number.(...)
Resumo:
Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC) specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting) and direct tensile tests. The local stress-crack opening relationship (σ-w) was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA) procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.
Resumo:
The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.
Resumo:
The future of the construction industry will require changes at many levels. One is the ability of companies to adapt to new challenges, converting needs to opportunities and simultaneously contributing to the solving of social and environmental problems. In the coming decades we will see a change in attitude in the industry, with a strong tendency to adopt natural and recycled materials, as well as bet on green technology and social innovation oriented to emerging countries. On the other hand, emerging countries have a high demand for housing construction on a large scale, but the current techniques in the developed countries for building requires a large amount of natural resources and skilled labor. This contextualization brings sustainability problems for the construction sector in emerging countries, often with scarce natural resources and with the construction sector underdeveloped. Through a cooperative action between the construction company Mota-Engil Engineering and the University of Minho in Portugal, a construction technology was developed based on the use of Compressed Earth Blocks as part of a social concept for innovative small houses, favoring the adoption of local and natural materials and with the main premise of being dedicated to self-construction. The HiLoTec project - Development of a Sustainable Self-Construction System for Developing Countries was based on this idea. One of the several results of this project is this construction manual. To Mota-Engil the project was a platform for incubation of knowledge about earth construction and to obtain a constructive solution validated technically and scientifically, suitable to be implemented in the markets where it operates. For the University of Minho the project was an opportunity to strengthen skills in research, laboratory and scientific development, through the development of engineering studies, architecture and sustainability, as well as supporting the doctoral scholarships and dissemination of scientific publications. May the knowledge of this project be of benefit, in the future, for the welfare of those who build a HiLoTec house.
Resumo:
In this work, the fracture mode I parameters of steel fibre reinforced self-compacting concrete (SFRSCC) were derived from the numerical simulation of indirect splitting tensile tests. The combined experimental and numerical research allowed a comparison between the stress-crack width (σ - w) relationship acquired straightforwardly from direct tensile tests, and the σ - w response derived from inverse analysis of the splitting tensile tests results. For this purpose a comprehensive nonlinear 3D finite element (FE) modeling strategy was developed. A comparison between the experimental results obtained from splitting tensile tests and the corresponding FE simulations confirmed the good accuracy of the proposed strategy to derive the σ – w for these composites. It is concluded that the post-cracking tensile laws obtained from inverse analysis provided a close relationship with the ones obtained from the experimental uniaxial tensile tests.
Resumo:
This paper presents the numerical simulations of the punching behaviour of centrally loaded steel fibre reinforced self-compacting concrete (SFRSCC) flat slabs. Eight half scaled slabs reinforced with different content of hooked-end steel fibres (0, 60, 75 and 90 kg/m3) and concrete strengths of 50 and 70 MPa were tested and numerically modelled. Moreover, a total of 54 three-point bending tests were carried out to assess the post-cracking flexural tensile strength. All the slabs had a relatively high conventional flexural reinforcement in order to promote the occurrence of punching failure mode. Neither of the slabs had any type of specific shear reinforcement rather than the contribution of the steel fibres. The numerical simulations were performed according to the Reissner-Mindlin theory under the finite element method framework. Regarding the classic formulation of the Reissner-Mindlin theory, in order to simulate the progressive damage induced by cracking, the shell element is discretized into layers, being assumed a plane stress state in each layer. The numerical results are, then, compared with the experimental ones and it is possible to notice that they accurately predict the experimental force-deflection relationship. The type of failure observed experimentally was also predicted in the numerical simulations.
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.
Resumo:
In the present work are described and discussed the results of an extensive experimental program that aims to study the long-term behaviour of cracked steel fibre reinforced self-compacting concrete, SFRSCC, applied in laminar structures. In a first stage, the influence of the initial crack opening level (wcr = 0.3 and 0.5 mm), applied stress level, fibre orientation/dispersion and distance from the casting point, on the flexural creep behaviour of SFRSCC was investigated. Moreover, in order to evaluate the effects of the creep phenomenon on the residual flexural strength, a series of monotonic tests were also executed. It was found that wcr = 0.5 mm series showed a higher creep coefficient comparing to the series with a lower initial crack opening. Furthermore, the creep performance of the SFRSCC was influenced by the orientation of the extracted prismatic specimens regarding the direction of the concrete flow within the cast panel.
Resumo:
The eco-efficient, self-compacting concrete (SCC) production, containing low levels of cement in its formulation, shall contribute for the constructions' sustainability due to the decrease in Portland cement use, to the use of industrial residue, for beyond the minimization of the energy needed for its placement and compaction. In this context, the present paper intends to assess the viability of SCC production with low cement levels by determining the fresh and hardened properties of concrete containing high levels of fly ash (FA) and also metakaolin (MK). Hence, 6 different concrete formulations were produced and tested: two reference concretes made with 300 and 500 kg/m3 of cement; the others were produced in order to evaluate the effects of high replacement levels of cement. Cement replacement by FA of 60% and by 50% of FA plus 20% of MK were tested and the addition of hydrated lime in these two types of concrete were also studied. To evaluate the self-compacting ability slump flow test, T500, J-ring, V-funnel and L-box were performed. In the hardened state the compressive strength at 3, 7, 14, 21, 28 and 90 days of age was determined. The results showed that it is possible to produce low cement content SCC by replacing high levels of cement by mineral additions, meeting the rheological requirements for self-compacting, with moderate resistances from 25 to 30 MPa after 28 days.
Resumo:
The voices of Cape Verdean migrant student mothers in Portugal are examined in the light of Archer’s (2003) theory on the ‘inner dialogue’. The article frames the mothers as complex social actors who respond to the uncertainties surrounding unplanned pregnancy through self-reflection and dialogue with and about the world, turning the disorientation of unexpected motherhood into a meaningful project. The analysis reveals how the women’s agency is located within the wider influences of kinship and gender norms and how these are already negotiated in the case of unconfirmed pregnancy.
Resumo:
Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.