984 resultados para secondary metabolism
Resumo:
DMRT1 has been suggested to play different roles in sex determination and gonad differentiation, because different expression patterns have been reported among different vertebrates. The groupers, since their gonads first develop as ovary and then reverse into testis, have been thought as good models to study sex differentiation and determination. In this study, we cloned the full-length cDNAs of DMRT] gene from orange-spotted grouper (Epinephelus coioides), and prepared corresponding anti-EcDMRT1] antiserum to study the relationship of DMRT] to sex reversal. One important finding is that the grouper DMRT] is not only differentially expressed in different stage gonads, but also restricted to specific stages and specific cells of spermatogenesis. Grouper DMRT1 protein exists only in spermatogonia, primary spermatocytes and secondary spermatocytes, but not in the supporting Sertoli cells. Moreover, we confirmed that EcSox3 is expressed not only in oogonia and different stage oocytes, but also in Sertoli cells and spermatogonia, and EcSox9 is expressed only in Sertoli cells. The data suggested that grouper DMRT1 might be a more specific sex differentiation gene for spermatogenesis, and play its role at the specific stages from spermatogonia to spermatocytes. In addition, no introns were found in the grouper DMRT1, and no duplicated DMRT1, genes were detected. The finding implicates that the intronless DMRT1 that is able to undergo rapid transcriptional turnover might be a significant gene for stimulating spermatogenesis in the protogynous hermaphroditic gonad. (c) 2006 Published by Elsevier Ireland Ltd.
Resumo:
Tetrahymena thermophila BF5 produce heat by metabolism and movement. Using a TAM air isothermal microcalorimeter, the power-time curves of the metabolism of T thermophila BF5 during growth were obtained and the action on them by the addition of Cr(VI) were studied. The morphological change with Cr(VI) coexisted and biomass change during the process of T thermophila BF5 growth were studied by light microscope. Chromium has been regarded as an essential trace element for life. However, hexavalent chromium is a known carcinogen, mutagen, cytotoxicant and strong oxidizing agent. Cr(VI) of different concentration have different effects on T thermophila BF5 growth with the phenomenon of low dose stimulation (0-3 x 10(-5) mol L-1) and high dose inhibition (3 x 10(-5) to 2.4 x 10(-4) mol L-1). The relationship between the growth rate constant (k) and c is a typical U-shaped curve, which is a characteristic of hormesis. T thermophila BF5 cannot grow at all when the concentration of Cr(VI) is up to 2.4 x 10(-4) mol L-1. The microscopic observations agree well with the results obtained by means of microcalorimetry. And T thermophila BF5 had obviously morphological changes by the addition of Cr(VI). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars, water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.
Resumo:
The 'sustainable remediation' concept has been broadly embraced by industry and governments in recent years in both the US and Europe. However, there is a strong need for more research to enhance its 'practicability'. In an attempt to fill this research gap, this study developed a generalised framework for selecting the most environmentally sustainable remedial technology under various site conditions. Four remediation technologies were evaluated: pump and treat (P&T), enhanced in situ bioremediation (EIB), permeable reactive barrier (PRB), and in situ chemical reduction (ISCR). Within the developed framework and examined site condition ranges, our results indicate that site characteristics have a profound effect on the life cycle impact of various remedial alternatives, thus providing insights and valuable information for determining what is considered the most desired remedy from an environmental sustainability perspective. © 2014 © 2014 University of Newcastle upon Tyne.
Resumo:
Resting metabolism was measured in immature mandarin fish Siniperca chuatsi weighing 42.1-510.2 g and Chinese snakehead Channa argus weighing 41.5-510.3 g at 10, 15, 20, 25, 30 and 35 degreesC. Heat increment of feeding was measured in mandarin fish weighing 202.0 (+/-14.0) g and snakehead weighing 200.8 (+/-19.3) g fed swamp leach Misgurnus anguillicaudatus at 1% body weight per day at 28 degreesC. In both species, weight exponent in the power relationship between resting metabolism and body weight was not affected by temperature. The relationship between resting metabolism and temperature could be described by a power function. The temperature exponent was 1.39 in mandarin fish and 2.10 in snakehead (P < 0.05), indicating that resting metabolism in snakehead increased with temperature at a faster rate than in mandarin fish. Multiple regression models were used to describe the effects of body weight (W, g) and temperature (T, C) on the resting metabolism (R-s, mg O-2/h): In R-s = - 5.343 + 0.772 In W + 1.387 In T for the mandarin fish and In R-s = -7.863 + 0.801 ln W + 2.104 In T for the Chinese snakehead. The proportion of food energy channelled to heat increment was 8.7% in mandarin fish and 6.8% in snakehead. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
The role of phosphorus cycling in algal metabolism was studied in a shallow lake, Donghu, in Wuhan using the methods of measuring cell quota C, N and P, and calculating nutrients uptake rate by algal photosynthesis. The mean daily phosphorus uptake rate of phytoplankton varied between 0.04-0.11 and 0.027-0.053 g/m2/d in station I and station II respectively. The turnover time of phosphorus in phytoplankton metabolism ranged from 0.75-5.0 days during 1979-1986. The available P was 0.176 (+/- 0.156) g/m3 (mean +/- SD) in 1982 and 0.591 (+/- 0.24) g/m3 in 1986. The relationship between P/B ratio (Y) and TP (X: mg/l) was described by the following regression equation Y = 1.163 + 0.512logX (r = 0.731, P < 0.001). The dynamics of algal biomass and algal species succession were monitored as the indicators of environmental enrichment. The small-sized algae have replaced the blue-green algae as the dominant species during 1979-1986. The small-sized algae include Merismopedia glauca, Cryptomonas ovata, Cryptomonas erosa, several species Cyclotella. There has been drastic decrease in algal biomass and an obvious increase in P/B ratio. A nutrient competition hypothesis is proposed to explain the reason of the disappearance of blue-green algae bloom. The drastic change in algal size and the results in high P/B ratio (reaching a maximum mean daily ratio of 1.09 in 1986) may suggest a transition of algal species from K-selection to r-selection in Lake Donghu.
Resumo:
In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
国科图