926 resultados para rotational bands in Ir-176


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma polymer films are very attractive for industrial applications in several sectors such as in the electronic, mechanic, biomedic, coating and others, due to its good adhesion, being insoluble in mild acids and bases and having a high crosslinking structure. This work reports the physical, structural, and surface properties of the polymer obtained from an acetylene plasma polymerization technique and treated by dielectric barrier discharge (DBD). The film was deposited in a reactor supplied by a radio-frequency power source at low pressure. After deposition, the nanofilms were treated in a DBD plasma reactor operating in air. The treatment times varied from 1 to 5 min. The analysis of molecular structure of the samples was investigated by FTIR spectroscopy, showing absorption bands in 3480, 2930, 1720, 1450 and 1380 cm(-1). The water contact-angle was investigated by goniometric technique and presented values from 5 to 65 degrees. The aging effect of these films was also studied. The alteration in the films surface morphology was assessed by an atomic force microscopy (AFM) which indicated that the roughness increased from 60 nm to 160 nm as a result of the DBD treatment. The refractive index of the samples presented values near 1.7, measured by UV-Visible spectroscopy. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega(GW)(f) = Omega(alpha)(f/f(ref))(alpha), we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha = 0, we constrain the energy density of the stochastic background to be Omega(GW)(f) < 5.6 x 10(-6). For the 600-1000 Hz band, Omega(GW)(f) < 0.14(f/900 Hz)(3), a factor of 2.5 lower than the best previously reported upper limits. We find Omega(GW)(f) < 1.8 x 10(-4) using a spectral index of zero for 170-600 Hz and Omega(GW)(f) < 1.0(f/1300 Hz)(3) for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to analyze the stability of the rotational motion’s artificial satellite using the Routh Hurwitz Algorithm (CRH) and the quaternions to describe the satellite’s attitude. This algorithm allows the investigation of the stability of the motion using the coefficients of the characteristic equation associated with the equation of the rotational motion in the linear form. The equations of the rotational motion are given by the four cinematic equations for the quaternion and the three equations of Euler for the spin velocity’s components. In the Euler equations are included the components of the gravity gradient torque (TGG) and the solar radiation torque (TRS). The TGG is generated by the difference of the Earth gravity force direction and intensity actuating on each satellite mass element and it depends on the mass distribution and the form of the satellite. The TRS is created by changing of the linear momentum, which happens due to the interactions of solar photons with the satellite surface. The equilibrium points are gotten by the equation of rotational motion and the CRH is applied in the linear form of these equations. Simulations are developed for small and medium satellites, but the gotten equilibrium points are not stable by CRH. However, when some of the eigenvalues of the characteristic equation are analyzed, it is found some equilibrium points which can be pointed out as stables for an interval of the time, due to small magnitude of the real part of these eigenvalue

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low crystalline PZT powder samples were successfully synthesized using polymeric precursor method and slow decomposition steps. The polymeric resin precursor was thermal treated in a muffle type oven varying the temperature from 250 °C to 700 °C and the time from 3 to 24 hours in order to investigate the order/disorder mechanism toward the amorphous powders. Powder samples with low crystalline phases were obtained at lower temperatures and long time of thermal treatment, demonstrating a kinetic dependence for organic removal and a thermodynamic barrier for crystallization processes. Through XRD and FTIR spectroscopy characterizations the long time thermal treated samples showed to be composed of the solid solution of metal oxides in absent of organic matter, originating broad XRD peaks profiles and no carbonaceous bands in FTIR spectra. A Photoluminescence characterization showed that the peak emission is higher for disordered and homogeneous phases, which only can be reached through the long time of thermal treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)