851 resultados para rock forming
Resumo:
In studies related to deep geological disposal of radioactive waste, it is current practice to transfer external information (e.g. from other sites, from underground rock laboratories or from natural analogues) to safety cases for specific projects. Transferable information most commonly includes parameters, investigation techniques, process understanding, conceptual models and high-level conclusions on system behaviour. Prior to transfer, the basis of transferability needs to be established. In argillaceous rocks, the most relevant common feature is the microstructure of the rocks, essentially determined by the properties of clay–minerals. Examples are shown from the Swiss and French programmes how transfer of information was handled and justified. These examples illustrate how transferability depends on the stage of development of a repository safety case and highlight the need for adequate system understanding at all sites involved to support the transfer.
Resumo:
Dermatophilus-like bacteria were observed in histological examinations of samples of diseased foot skin from greater flamingos (Phoenicopterus roseus) living in zoological gardens in Switzerland. When grown on TSA-SB containing polymyxin B, the bacteria isolated from these skin samples formed hyphae, as is typical for Dermatophilus congolensis, but these bacteria were non-haemolytic. The closest relatives based on 16S rRNA gene sequences were the two members of the genus Arsenicicoccus, Arsenicicoccus bolidensis and Arsenicicoccus piscis. A representative of the isolated strains shared 34.3 % DNA-DNA relatedness with the type strain of A. bolidensis, 32.3 % with the type strain of A. piscis and 34.5 % with the type strain of D. congolensis, demonstrating that these strains do not belong to any of these species. The phenotypic characteristics differed from those of members of the genus Arsenicicoccus as well as from those of D. congolensis. The G+C content of strain KM 894/11(T) was 71.6 mol%. The most abundant fatty acids were iso-C15 : 0, summed feature 3 (including C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω9c. MK-8(H4) was the predominant menaquinone. Cell-wall structure analysis revealed that the peptidoglycan type was A3γ ll-Dpm-Gly (type A41.1). Based on genotypic and chemotaxonomic characteristics, the isolated strains represent a novel species within the genus Arsenicicoccus, for which the name Arsenicicoccus dermatophilus sp. nov. is proposed. The type strain is KM 894/11(T) ( = DSM 25571(T) = CCUG 62181(T) = CCOS 690(T)), and strain KM 1/12 ( = DSM 25572 = CCUG 62182 = CCOS 691) is a reference strain.
Resumo:
[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.
Resumo:
Diepkloof Rock Shelter offers an exceptional opportunity to study the onset and evolution of both Still Bay (SB) and Howiesons Poort (HP) techno-complexes. However, previous age estimates based on luminescence dating of burnt quartzites (Tribolo et al., 2009) and of sediments (Jacobs et al., 2008) were not in agreement. Here, we present new luminescence ages for 17 rock samples (equivalent dose estimated with a SAR-ITL protocol instead of classical MAAD-TL) as well as for 5 sediment samples (equivalent dose estimated with SAR-single grain OSL protocol) and an update of the 22 previous age estimates for burnt lithics (modified calibration and beta dose estimates). While a good agreement between the rock and sediment ages is obtained, these estimates are still significantly older than those reported by Jacobs et al. (2008). After our own analyses of the sediment from Diepkloof, it is suspected that these authors did not correctly chose the parameters for the equivalent dose determination, leading to an underestimate of the equivalent doses, and thus of the ages. From bottom to top, the mean ages are 100 ± 10 ka for stratigraphic unit (SU) Noël and 107 ± 11 ka for SU Mark (uncharacterized Lower MSA), 100 ± 10 ka for SU Lynn-Leo (Pre-SB type Lynn), 109 ± 10 ka for SUs Kim-Larry (SB), 105 ± 10 ka for SUs Kerry-Kate and 109 ± 10 ka for SU Jess (Early HP), 89 ± 8 ka for SU Jude (MSA type Jack), 77 ± 8 ka for SU John, 85 ± 9 ka for SU Fox, 83 ± 8 ka for SU Fred and 65 ± 8 ka for SU OB5 (Intermediate HP), 52 ± 5 ka for SUs OB2-4 (Late HP). This chronology, together with the technological analyses, greatly modifies the current chrono-cultural model regarding the SB and the HP and has important archaeological implications. Indeed, SB and HP no longer appear as short-lived techno-complexes with synchronous appearances for each and restricted to Oxygen Isotopic Stage (OIS) 4 across South Africa, as suggested by Jacobs et al. (2008, 2012). Rather, the sequence of Diepkloof supports a long chronology model with an early appearance of both SB and HP in the first half of OIS 5 and a long duration of the HP into OIS 3. These new dates imply that different technological traditions coexisted during OIS 5 and 4 in southern Africa and that SB and HP can no longer be considered as horizon markers.
Resumo:
Rosette-forming glioneuronal tumor (RGNT) is a recently introduced, indolent neoplasm composed of diminutive circular aggregates of neurocytic-like cells on a noninfiltrative astrocytic background, typically located in the cerebellar midline The traded concept of RGNT being derived from site-specific periventricular precursors may be questioned in the face of extracerebellar examples as well as ones occurring in combination with other representatives of the glioneuronal family. We describe a hitherto not documented example of asymptomatic RGNT discovered during autopsy of a 74-year-old male. Located in the tuberal vermis, this lesion of 6 mm diameter consisted of several microscopic nests of what were felt to represent nascent stages of RGNT, all of them centered on the internal granular layer, and ranging from mucoid dehiscences thereof to fully evolved - if small - tumor foci. Molecular genetic analysis revealed a missense mutation in Exon 20 of the PIK3CA gene involving an A→G transition at Nucleotide 3140. On the other hand, neither codeletion of chromosomes 1p/19q nor pathogenic mutations of IDH1/2 were detected. By analogy with in situ paradigms in other organs, we propose that this tumor is likely to have arisen from the internal granular layer, rather than the plate of the 4th ventricle. A suggestive departure from the wholesale argument of "undifferentiated precursors", this finding also indirectly indicates that a subset of non-classical RGNTs - in particular extracerebellar examples, whose origin cannot be mechanistically accounted for by either of the above structures - may possibly reflect an instance of phenotypic convergence, rather than a lineage-restricted entity.
Resumo:
In order to date any geological event, suitable mineral geochronometers that record that and only that event must be identified and analyzed. In the case of metasomatism, recrystallisation is a key process that controls both the petrology and the isotopic record of minerals. It can occur both in the form of complete neocrystallisation (e.g. in a vein) and in the form of pseudomorphism, whereby dissolution/reprecipitation at the submicroscopic scale plays a central role. Recrystallisation may be complete or not, raising the possibility that relicts of a pre-metasomatic assemblage may be preserved. Because recrystallisation is energetically less costly at almost any temperature than diffusion, and because radiogenic isotopes (except 4He) never diffuse faster than major elements forming the mineral structure, there is a strong causal link between petrographic relicts and isotopic inheritance (as demonstrated for zircon, monazite, titanite, amphibole, K-feldspar, biotite, and muscovite). Metasomatic assemblages commonly contain such mixtures between relicts and newly formed phases, whose geochronology is slightly more complex than that of simple, ideal systems, but can be managed by techniques that have become routine in the last decade and which are described in this chapter. Because of its crucial role in controlling the isotope systematics, the petrogenesis of a mineral needs to be understood in extreme detail, especially using microchemical analyses and micro-imaging techniques, before mineral ages can be correctly interpreted. As the occurrence of recrystallization is limited by the availability of water, minerals act as “geohygrometers” that allow constraints to be placed on the nature and age of fluid circulation episodes, especially metasomatic events.
Resumo:
Chondrites are among the most primitive objects in the Solar System and constitute the main building blocks of telluric planets. Among the radiochronometers currently used for dating geological events, Sm–Nd and Lu–Hf are both composed of refractory, lithophile element. They are thought to behave similarly as the parent elements (Sm and Lu) are generally less incompatible than the daughter elements (Nd and Hf) during geological processes. As such, their respective average isotopic compositions for the solar system should be well defined by the average of chondrites, called Chondritic Uniform Reservoir (CHUR). However, while the Sm–Nd isotopic system shows an actual spread of less than 4% in the average chondritic record, the Lu–Hf system shows a larger variation range of 28% [Bouvier A., Vervoort J. D. and Patchett P. J. (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett.273, 48–57]. To better understand the contrast between Sm–Nd and Lu–Hf systems, the REE and Hf distribution among mineral phases during metamorphism of Karoonda (CK) and Vigarano-type (CV) carbonaceous chondrites has been examined. Mineral modes were determined from elemental mapping on a set of five CK chondrites (from types 3–6) and one CV3 chondrite. Trace-element patterns are obtained for the first time in all the chondrite-forming minerals of a given class (CK chondrites) as well as one CV3 sample. This study reveals that REE are distributed among both phosphates and silicates. Only 30–50% of Sm and Nd are stored in phosphates (at least in chondrites types 3–5); as such, they are not mobilized during early stages of metamorphism. The remaining fraction of Sm and Nd is distributed among the same mineral phases; these elements are therefore not decoupled during metamorphism. Of the whole-rock total of Lu, the fraction held in phosphate decreases significantly as the degree of metamorphism increases (30% for types 3 and 4, less than 5% in type 6). In contrast to Lu, Hf is mainly hosted by silicates with little contribution from phosphates throughout the CK metamorphic sequence. A significant part of Sm and Nd are stored in phosphates in types 3–5, and these elements behave similarly during CK chondrite metamorphism. That explains the robustness of the Sm/Nd ratios in chondrites through metamorphism, and the slight discrepancies observed in the present-day isotopic Nd values in chondrites. On the contrary, Lu and Hf are borne by several different minerals and consequently they are redistributed during metamorphism–induced recrystallization. The Lu/Hf ratios are therefore significantly disturbed during chondrites metamorphism, leading to the high discrepancies observed in present-day Hf isotopic values in chondrites.
Resumo:
The Effingen Member is a low-permeability rock unit of Oxfordian age (ca. 160 Ma) that occurs across northern Switzerland. It comprises sandy calcareous marls and (argillaceous) limestones. This report describes the hydrogeochemistry, mineralogy and supporting physical properties of the Effingen Member in three boreholes in the Jura-Südfuss area: Oftringen, Gösgen and Küttigen, where it is 220–240 m thick. The top of the Effingen Member is at 420, 66 and 32 m depths at the three sites. Core materials are available from Oftringen and Gösgen, whereas information from Küttigen is limited to cuttings, in-situ hydrogeological testing and geophysical logging. Hydrogeological boundaries of the Effingen Member vary between locations. Ground-water flows were identified during drilling at the top (Geissberg Member), but not at the base, of the Effingen Member at Oftringen, at the base (Hauptrogenstein Formation) of the Effingen Member at Gösgen, and in a limestone layer (Gerstenhübel unit) within the Effingen Member at Küttigen. The marls and limestones of the Effingen Member have carbonate contents of 46–91 wt.-% and clay-mineral contents of 5–37 wt.-%. Pyrite contents are up to 1.6 wt.-%, but no sulphate minerals were detected by routine analyses. Clay minerals are predominantly mixed-layer illite-smectite, illite and kaolinite, with sporadic traces of chlorite and smectite. Veins filled with calcite ± celestite occur through the Effingen Member at Oftringen but not at Gösgen or Küttigen. They formed at 50–70 ºC from externally derived fluids, probably of Miocene age. Water contents are 0.7–4.2 wt.-%, corresponding to a water-loss porosity range of 1.9–10.8 vol.-%. Specific surface areas, measured by the BET method, are 2–30 m2/g, correlating with clay-mineral contents. Water activity has been measured and yielded surprisingly low values down to 0.8. These cannot be explained by pore-water salinity alone and include other effects, such as changes in the fabric due to stress release or partial saturation. Observed variations in measurements are not fully understood. Cation exchange capacity (CEC) and exchangeable cation populations have been studied by the Ni-en method. CEC, derived from the consumption of the index cation Ni, is 9–99 meq/kgrock at a solid:liquid ratio of 1, correlating with the clay-mineral content. Cation concentrations in Ni-en extract solutions are in the order Na+≥Ca2+>Mg2+>K+>Sr2+. However, the analytical results from the Ni-en extractions have additional contributions from cations originating from pore water and from mineral dissolution reactions that occurred during extraction, and it was not possible to reliably quantify these contributions. Therefore, in-situ cation populations and selectivity coefficients could not be derived. A suite of methods have been used for characterising the chemical compositions of pore waters in the Effingen Member. Advective displacement was used on one sample from each Oftringen and Gösgen and is the only method that produces results that approach complete hydrochemical compositions. Aqueous extraction was used on core samples from these two boreholes and gives data only for Cl- and, in some cases, Br-. Out-diffusion was used on core samples from Oftringen and similarly gives data for Cl- and Br- only. For both aqueous extraction and out-diffusion, reaction of the experimental water with rock affected concentrations of cations, SO42 and alkalinity in experimental solutions. Another method, centrifugation, failed to extract pore water. Stable isotope ratios (δ18O and δ2H) of pore waters in core samples from Oftringen were analysed by the diffusive exchange method and helium contents of pore water in Oftringen samples were extracted for mass spectrometric analysis by quantitative outgassing of preserved core samples. Several lines of evidence indicate that drillcore samples might not have been fully saturated when opened and subsampled in the laboratory. These include comparisons of water-loss porosities with physical porosities, water-activity measurements, and high contents of dissolved gas as inferred from ground-water samples. There is no clear proof of partial saturation and it is unclear whether this might represent in-situ conditions or is due to exsolution of gas due to the pressure release since drilling. Partial saturation would have no impact on the recalculation of pore-water compositions from aqueous extraction experiments using water-loss porosity data. The largest uncertainty in the pore-water Cl- concentrations recalculated from aqueous extraction and out-diffusion experiments is the magnitude of the anion-accessible fraction of water-loss porosity. General experience of clay-mineral rich formations suggests that the anion-accessible porosity fraction is very often about 0.5 and generally in a range of 0.3 to 0.6 and tends to be inversely correlated with clay-mineral contents. Comparisons of the Cl- concentration in pore water obtained by advective displacement with that recalculated from aqueous extraction of an adjacent core sample suggests a fraction of 0.27 for an Oftringen sample, whereas the same procedure for a Gösgen sample suggests a value of 0.64. The former value for anion-accessible porosity fraction is presumed to be unrepresentative given the local mineralogical heterogeneity at that depth. Through-diffusion experiments with HTO and 36Cl- suggest that the anion-accessible porosity fraction in the Effingen Member at Oftringen and Gösgen is around 0.5. This value is proposed as a typical average for rocks of the Effingen Member, bearing in mind that it varies on a local scale in response to the heterogeneity of lithology and pore-space architecture. The substantial uncertainties associated with the approaches to estimating anion-accessible porosity propagate into the calculated values of in-situ pore-water Cl- concentrations. On the basis of aqueous extraction experiments, and using an anion-accessible porosity fraction of 0.5, Cl- concentrations in the Effingen Member at Oftringen reach a maximum of about 14 g/L in the centre. Cl- decreases upwards and downwards from that, forming a curved depth profile. Cl- contents in the Effingen Member at Gösgen increase with depth from about 3.5 g/L to about 14 g/L at the base of the cored profile (which corresponds to the centre of the formation). Out-diffusion experiments were carried out on four samples from Oftringen, distributed through the Effingen Member. Recalculated Cl- concentrations are similar to those from aqueous extraction for 3 out of the 4 samples, and somewhat lower for one sample. Concentrations of other components, i.e. Na+, K+, Ca2+, Mg2+, Sr2+, SO42- and HCO3- cannot be obtained from the aqueous extraction and out-diffusion experimental data because of mineral dissolution and cation exchange reactions during the experiments. Pore-water pH also is not constrained by those extraction experiments. The only experimental approach to obtain complete pore-water compositions for samples from Oftringen and Gösgen is advective displacement of pore water. The sample from Oftringen used for this experiment is from 445 m depth in the upper part of the Effingen Member and gave eluate with 16.5 g/L Cl- whereas aqueous extraction from a nearby sample indicated about 9 g/L Cl-. The sample from Gösgen used for advective displacement is from 123 m depth in the centre of the Effingen Member sequence and gave eluate with about 9 g/L Cl- whereas aqueous extraction gave 11.5 g/L Cl-. In both cases the pore waters have Na-(Ca)-Cl compositions and SO42- concentrations of about 1.1 g/L. The Gösgen sample has a Br/Cl ratio similar to that of sea water, whereas this ratio is lower for the Oftringen sample. Taking account of uncertainties in the applied experimental approaches, it is reasonable to place an upper limit of ca. 20 g/L on Cl- concentration for pore water in the Effingen Member in this area. There are major discrepancies between pore-water SO42- concentrations inferred from aqueous extraction or out-diffusion experiments and those obtained from advective displacement in both the Oftringen and Gösgen cases. A general conclusion is that all or at least part of the discrepancies are attributable to perturbation of the sulphur system and enhancement of SO42- by sulphate mineral dissolution and possibly minor pyrite oxidation during aqueous extraction and out-diffusion. Therefore, data for SO42- calculated from those pore-water sampling methods are considered not to be representative of in-situ conditions. A reference pore-water composition was defined for the Effingen Member in the Jura Südfuss area. It represents the probable upper limits of Cl- contents and corresponding anion and cation concentrations that are reasonably constrained by experimental data. Except for Cl- and possibly Na+ concentrations, this composition is poorly constrained especially with respect to SO42- and Ca2+ concentrations, and pH and alkalinity. Stable isotope compositions, δ18O and δ2H, of pore waters in the Effingen Member at Oftringen plot to the right of the meteoric water line, suggesting that 18O has been enriched by water-rock exchange, which indicates that the pore waters have a long residence time. A long residence time of pore water is supported by the level of dissolved 4He that has accumulated in pore water of the Effingen Member at Oftringen. This is comparable with, or slightly higher than, the amounts of 4He in the Opalinus Clay at Benken. Ground waters were sampled from flowing zones intersected by boreholes at the three locations. The general interpretation is that pore waters and ground-water solutes may have similar origins in Mesozoic and Cenozoic brackish-marine formations waters, but ground-water solutes have been diluted rather more than pore waters by ingress of Tertiary and Quaternary meteoric waters. The available hydrochemical data for pore waters from the Effingen Member at these three locations in the Jura-Südfuss area suggest that the geochemical system evolved slowly over geological periods of time, in which diffusion was an important mechanism of solute transport. The irregularity of Cl- and δ18O profiles and spatial variability of advective ground-water flows in the Malm-Dogger system suggests that palaeohydrogeological and hydrochemical responses to changing tectonic and surface environmental conditions were complex.