999 resultados para restorativ film


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon (a-Si:H) thin films have been deposited from silane using a novel photo-enhanced decomposition technique. The system comprises a hydrogen discharge lamp contained within the reaction vessel; this unified approach allows high energy photon excitation of the silane molecules without absorption by window materials or the need for mercury sensitisation. The film growth rates (exceeding 4 Angstrom/s) and material properties obtained are comparable to those of films produced by plasma-enhanced CVD techniques. The reduction of energetic charged particles in the film growth region should enable the fabrication of cleaner semiconductor/insulator interfaces in thin-film transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a unified approach to modelling the polysilicon thin film transistor (TFT) for the purposes of circuit design. The approach uses accurate methods of predicting the channel conductance and then fitting the resulting data with a polynomial. Two methods are proposed to find the channel conductance: a device model and measurement. The approach is suitable because the TFT does not have a well defined threshold voltage. The polynomial conductance is then integrated generally to find the drain current and channel charge, necessary for a complete circuit model. © 1991 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the variation of the integrated density of states with conduction activation energy in hydrogenated amorphous silicon thin film transistors. Results are given for two different gate insulator layers, PECVD silicon oxide and thermally grown silicon dioxide. The different gate insulators produce transistors with very different initial transfer characteristics, but the variation of integrated density of states with conduction activation energy is shown to be similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, we report a new poly-Si stepped gate Thin Film Transistor (SG TFT) on glass. The Density of States extracted from measured I-V characteristics has been used to evaluate the device performance with a two dimensional device simulator. The results show that the three-terminal SG TFT device has a switching speed comparable to a low voltage structure and the high on-current capability of a metal field plate (MFP) TFT and the potential for comparable breakdown characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahedrally bonded amorphous carbon (ta-C) is a new type of semiconducting thin film material. It can be produced at room temperature using the Filtered Cathodic Vacuum Arc technique. The as-grown undoped ta-C is p-type in nature but it can be n-doped by the addition of nitrogen during deposition. This paper will describe thin film transistor design and fabrication using ta-C as the active channel layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the fabrication and characterization of a carbon based, bottom gate, thin film transistor (TFT). The active layer is formed from highly sp2 bonded nitrogenated amorphous carbon (a-C:N) which is deposited at room temperature using a filtered cathodic vacuum arc technique. The TFT shows p-channel operation. The device exhibits a threshold voltage of 15 V and a field effect mobility of 10-4 cm2 V-1 s-1 . The valence band tail of a-C:N is observed to be much shallower than that of a-Si:H, but does not appear to severely impede the shift of the Fermi level. This may indicate that a significant proportion of the a-C tail states can still contribute to conduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study has been made of the growth of both hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiN) by electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR-PECVD). In the case of a-SiN, helium and nitrogen gas is injected into the system such that it passes through the resonance zone. These highly ionised gases provide sufficient energy to ionise the silane gas, which is injected further downstream. It is demonstrated that a gas phase reaction occurs between the silane and nitrogen species. It is control of the ratio of silane to nitrogen in the plasma which is critical for the production of stoichiometric a-SiN. Material has been produced at 80°C with a Si:N ratio of 1:1.3 a breakdown strength of ∼6 MV cm-1 and resistivity of > 1014 Ω cm. In the case of a-Si:H, helium and hydrogen gas is injected into the ECR zone and silane is injected downstream. It is shown that control of the gas phase reactions is critical in this process also. a-Si:H has been deposited at 80 °C with a dark conductivity of 10-11 Ω-1 cm-1 and a photosensitivity of justbelowl 4×104. Such materials are suitable for use in thin film transistors on plastic substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine [1]. This is done by making assumptions for the evolution of the oil temperatures during warm-up and that the oil control ring during downstrokes is fully flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e. pure hydrodynamic lubrication, boundary lubrication and pure asperity contact, non-steady wetting of both inlet and outlet of the piston ring, capability to use all ring face profiles that can be approximated by piece-wise polynomials and, finally, the ability to model the rheology of multi-grade oils. Not surprisingly, the simulations show that by far the most important parameter is the temperature dependence of the oil viscosity. This dependence is subsequently examined further by choosing different oils. The baseline oil is SAE 10W30 and results are compared to those using the SAE 30 and the SAE 10W50 oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LIMA (Laser-induced Ion Mass Analysis) is a new technique capable of compositional analysis of thin films and surface regions. Under UHV conditions a focused laser beam evaporates and ionizes a microvolume of specimen material from which a mass spectrum is obtained. LIMA has been used to examine a range of thin film materials with applications in electronic devices. The neutral photon probe avoids charging problems, and low conductivity materials are examined without prior metallization. Analyses of insulating silicon oxides, nitrides, and oxynitrides confirm estimates of composition from infrared measurements. However, the hydrogen content of hydrogenated amorphous silicon (a-Si : H) found by LIMA shows no correlation with values given by infrared absorption analysis. Explanations are proposed and discussed. © 1985.