1000 resultados para residuos industriales
Resumo:
La presente tesis doctoral, “Aprovechamiento térmico de residuos estériles de carbón para generación eléctrica mediante tecnologías de combustión y gasificación eficientes y con mínimo impacto ambiental”, desarrolla la valorización energética de los residuos del carbón, estériles de carbón, producidos durante las etapas de extracción y lavado del carbón. El sistema energético se encuentra en una encrucijada, estamos asistiendo a un cambio en el paradigma energético y, en concreto, en el sector de la generación eléctrica. Se precipita un cambio en la generación y el consumo eléctricos. Una mayor concienciación por la salud está forzando la contención y eliminación de agentes contaminantes que se generan por la utilización de combustibles fósiles de la forma en la que se viene haciendo. Aumenta la preocupación por el cambio climático y por contener en 2°C el aumento de la temperatura de la Tierra para final de este siglo, circunstancia que está impulsando el desarrollo e implantación definitiva de tecnología de control y reducción de emisiones CO2. Generar electricidad de una manera sostenible se está convirtiendo en una obligación. Esto se materializa en generar electricidad respetando el medioambiente, de una forma eficiente en la utilización de los recursos naturales y a un coste competitivo, pensando en el desarrollo de la sociedad y en el beneficio de las personas. En la actualidad, el carbón es la principal fuente de energía utilizada para generar electricidad, y su empleo presenta la forma de energía más barata para mejorar el nivel de vida de cualquier grupo y sociedad. Además, se espera que el carbón siga presente en el mix de generación eléctrica, manteniendo una significativa presencia y extrayéndose en elevadas cantidades. Pero la producción de carbón lleva asociada la generación de un residuo, estéril, que se produce durante la extracción y el lavado del mineral de carbón. Durante décadas se ha estudiado la posibilidad de utilizar el estéril y actualmente se utiliza, en un limitado porcentaje, en la construcción de carreteras, terraplenes y rellenos, y en la producción de algunos materiales de construcción. Esta tesis doctoral aborda la valorización energética del estéril, y analiza el potencial aprovechamiento del residuo para generar electricidad, en una instalación que integre tecnología disponible para minimizar el impacto medioambiental. Además, persigue aprovechar el significativo contenido en azufre que presenta el estéril para producir ácido sulfúrico (H2SO4) como subproducto de la instalación, un compuesto químico muy demandado por la industria de los fertilizantes y con multitud de aplicaciones en otros mercados. Se ha realizado el análisis de caracterización del estéril, los parámetros significativos y los valores de referencia para su empleo como combustible, encontrándose que su empleo como combustible para generar electricidad es posible. Aunque en España se lleva extrayendo carbón desde principios del siglo XVIII, se ha evaluado para un período más reciente la disponibilidad del recurso en España y la normativa existente que condiciona su aplicación en el territorio nacional. Para el período evaluado, se ha calculado que podrían estar disponibles más de 68 millones de toneladas de estéril susceptibles de ser valorizados energéticamente. Una vez realizado el análisis de la tecnología disponible y que podría considerarse para emplear el estéril como combustible, se proponen cuatro configuraciones posibles de planta, tres de ellas basadas en un proceso de combustión y una de ellas en un proceso de gasificación. Tras evaluar las cuatro configuraciones por su interés tecnológico, innovador y económico, se desarrolla el análisis conceptual de una de ellas, basada en un proceso de combustión. La instalación propuesta tiene una capacidad de 65 MW y emplea como combustible una mezcla de carbón y estéril en relación 20/80 en peso. La instalación integra tecnología para eliminar en un 99,8% el SO2 presente en el gas de combustión y en más de un 99% las partículas generadas. La instalación incorpora una unidad de producción de H2SO4, capaz de producir 18,5 t/h de producto, y otra unidad de captura para retirar un 60% del CO2 presente en la corriente de gases de combustión, produciendo 48 tCO2/h. La potencia neta de la planta es 49,7 MW. Se ha calculado el coste de inversión de la instalación, y su cálculo resulta en un coste de inversión unitario de 3.685 €/kW. ABSTRACT The present doctoral thesis, “Thermal utilisation of waste coal for electricity generation by deployment of efficient combustion and gasification technologies with minimum environmental impact”, develops an innovative waste-to-energy concept of waste coals produced during coal mining and washing. The energy system is at a dilemma, we are witnessing a shift in the energy paradigm and specifically in the field of electricity generation. A change in the generation and electrical consumption is foreseen. An increased health consciousness is forcing the containment and elimination of pollutants that are generated by the use of fossil fuels in the way that is being done. Increasing concern about climate change and to contain the rise of global temperature by 2°C by the end of this century, is promoting the development and final implementation of technology to control and reduce the CO2 emission. Electricity generation in a sustainable manner is becoming an obligation. This concept materialised in generating electricity while protecting the environment and deployment of natural resources at a competitive cost, considering the development of society and people´s benefit. Currently, coal is the main source of energy employ to generate electricity, and its use represents the most cost competitive form of energy to increase the standard of living of any group or society. Moreover, coal will keep playing a key role in the global electricity generation mix, maintaining a significant presence and being extracting in large amounts. However, coal production implies the production of waste, termed waste coal or culm in Pennsylvania anthracite extraction, produced during coal mining and coal washing activities. During the last decades, the potential use of waste coal has been studied, and currently, in a limited amount, waste coal is used in roads construction, embankments and fillings, and to produce some construction materials. This doctoral thesis evaluates the waste to energy of waste coals and assesses its potential use to generate electricity, implementing available technology to minimise the environment impact. Additionally, it pursues the significant advantage that presents sulphur content in waste coal to produce sulphuric acid (H2SO4) as a byproduct of the waste-to-energy process, a chemical compound highly demanded by the fertiliser industry and many applications in other markets. It analyses the characteristics of waste coal, and assesses the significant parameters and reference values for its use as fuel, being its fuel use for electricity generation very possible. While mining coal is taking place in Spain since the 1700s, it has been evaluated for a more recent period the waste coal available in Spain and the existing legislation that affects its application and deploy to generate electricity in the country. For the evaluation period has been calculated that may be available more than 68 million tons of waste coal that can be waste-toenergy. The potential available technology to deploy waste coal as fuel has been evaluated and assessed. After considering this, the doctoral thesis proposes four innovative alternatives of facility configuration, three of them based on a combustion process and one in a gasification process. After evaluating the four configurations for its technological, innovative and economic interest, the conceptual analysis of one of alternatives, based on a combustion process, takes place. The proposed alternative facility developed has a capacity of 65 MW, using as fuel a mixture of coal and waste coal 80/20 by weight. The facility comprises technology to remove 99.8% SO2 present in the flue gas and more than 99% of the particles. The facility includes a unit capable of producing 18.5 t/h of H2SO4, and another capture facility, removing 60% of CO2 present in the flue gas stream, producing 48 tCO2/h. The net capacity of the power station is 49.7 MW. The facility unitary cost of investment is 3,685 €/kW.
Resumo:
Industriales Research Meeting 2016 (IRM16) is an event to show the research activities at the School of Industrial Engineering (ETSII) of the Technical University of Madrid (UPM). The main purpose of this event is to present the ongoing research carried out by professors and researchers of the Institutes, Research Centres, Research Groups and Departments of this School, through funded research projects in close collaboration with public and private institutions and companies, some of them from IBEX-35. This book contains the 138 posters presented from different branches of engineering such as: acoustic, aerospace, bioengineering, chemical, electrical, electronics, automation, energy, environmental, management and industrial organization, laser technology and industrial organization, laser technology and applications, materials, mathematics, statistics, mechanics, manufacturing, structures, nuclear technology, seismic, vehicles and railways.
Resumo:
El objetivo principal del presente proyecto es implantar un sistema de calidad en un laboratorio de caracterización de residuos, con el fin de obtener la acreditación otorgada por la Entidad Nacional de Acreditación (ENAC) como laboratorio de caracterización de residuos metalúrgicos no férreos. El sistema de calidad a implantar se basa en la Norma UNE-EN ISO/IEC 17025:2005 (requisitos generales para la competencia de los laboratorios de ensayo y calibración). Se trata por tanto de determinar los principales residuos de proceso y operación, de la metalurgia del Al, Cu, Zn y Pb, para posteriormente y mediante las normas UNEEN-CEN identificar los ensayos normalizados de caracterización de dichos residuos. y adecuar dichos ensayos a la norma. Finalmente se describe el proceso de implantación del sistema de calidad basado en la citada norma, y se hace un estudio económico que incluye tanto los gastos de inversión en equipos como los gastos de operación y mantenimiento (CAPEX y OPEX). Todo ello para poder ser acreditados por un organismo como ENAC.
Resumo:
Las características de heterogeneidad de los residuos sólidos urbanos así como la degradación biológica de sus componentes orgánicos influyen en los aspectos geotécnicos de los vertederos. La magnitud y duración de los asientos son factores muy importantes en el estudio del comportamiento de vertederos. La velocidad de asiento disminuye con el tiempo pero se mantiene durante muchos años después de su clausura. Para reducir los asientos del relleno, uno de los métodos de tratamiento que se utiliza es la compactación dinámica de los residuos sólidos. En este trabajo se estudia la mejora, a través de la compactación dinámica por impacto tipo “Menard”, de un vertedero de residuos sólidos en Madrid y los asientos provocados por la aplicación de una sobrecarga. Se analiza el comportamiento de los residuos sólidos con tratamiento de mejora, así como la predicción de asientos a 10 años aplicando los modelos Sowers (1973), Yen & Scanlon (1975), Gandola et al. (1992) y Meruelo (1994). Heterogonous characteristics of solid urban residues as well as biological decomposition of its organic components affect the geotechnical aspects of the landfills. The magnitude and the duration of the landfill settlement are one of the significant factors in studying the behavior of landfills. Although the rate of the settlement decreases as the time passes, however it is still maintained during many years after its closure. One of the methods used to reduce the settlement waste is through the dynamic consolidation methods of the solid residues. In this work, by applying the “Menard” dynamic consolidation method, we are studying the improvement of solid residue landfill in Madrid and the settlements provoked by overloading. The behavior of the solid residues through the improvement treatments as well as 10 years ahead prediction are analyzed by applying the models by Sowers (1973), Yen & Scanlon (1975), Gandola et al. (1992) and Meruelo (1994).
Resumo:
La gasificación de lodos de depuración consiste en la conversión termoquímica del lodo por oxidación parcial a alta temperatura mediante un agente gasificante, que generalmente es aire, oxígeno o vapor de agua. Se trata de una tecnología de gran interés, ya que consigue reducir la masa de estos residuos y permite el aprovechamiento de los gases formados, tanto en la generación de energía térmica y/o eléctrica como en la síntesis de productos químicos orgánicos y combustibles líquidos. Debido a la complejidad de este proceso, es útil el uso de modelos que faciliten su estudio de forma fiable y a bajo coste. El presente Proyecto Fin de Carrera se centra en el diseño de un modelo adimensional de equilibrio en estado estacionario basado en la minimización de la energía libre de Gibbs. Para ello, se ha empleado el software de simulación de procesos Aspen Plus, que posee una amplia base de datos de propiedades físicas y permite gran flexibilidad en el manejo de sólidos. Para la elaboración del modelo se han asumido las hipótesis de mezcla perfecta dentro del reactor y operación isoterma. El gasificador se ha considerado de lecho fluidizado burbujeante, al permitir un buen control de la temperatura y una alta transferencia de materia y energía entre el sólido y el agente gasificante. El modelo desarrollado consta de cuatro etapas. La primera reproduce el proceso de pirólisis o descomposición térmica de los componentes del lodo en ausencia de agente gasificante. En la segunda etapa se simula que todo el nitrógeno y el azufre contenidos en el lodo se transforman en amoniaco y ácido sulfhídrico, respectivamente. En la tercera etapa se produce la gasificación en dos reactores. El primer gasificador alcanza el equilibrio químico mediante la minimización de la energía libre de Gibbs del sistema. En el segundo reactor se establece un equilibrio restringido por medio de la especificación de una aproximación de temperatura para cada reacción. Este método permite validar los resultados del modelo con datos reales. En la última etapa se separa el residuo carbonoso o char (compuesto por carbono y cenizas) del gas de salida, formado por N2, H2, CO, CO2, CH4 (supuesto como único hidrocarburo presente), NH3, H2S y H2O. Este gas debe ser depurado mediante equipos de limpieza aguas abajo. Los resultados de la simulación del modelo han sido validados frente a los valores obtenidos en ensayos previos llevados a cabo en la planta de gasificación a escala de laboratorio ubicada en el Departamento de Ingeniería Química Industrial y del Medio Ambiente de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Estos resultados han mostrado muy buena concordancia con los obtenidos experimentalmente, con un error inferior al 7% en todos los parámetros analizados en el caso de gasificación con aire y menor al 13% cuando se utiliza una mezcla aire/vapor de agua como agente gasificante. Se ha realizado un análisis de sensibilidad con el fin de estudiar la influencia de las condiciones de operación (temperatura, ratio equivalente y ratio vapor/biomasa) sobre los resultados del proceso modelado (composición, producción y poder calorífico inferior de los gases, conversión de carbono y eficiencia de la gasificación). Para ello, se han llevado a cabo diferentes simulaciones modificando la temperatura de gasificación entre 750ºC y 850ºC, el ratio equivalente (ER) entre 0,2 y 0,4 y el ratio vapor/biomasa (S/B) entre 0 y 1. Como ya ocurriera con la validación del modelo, los resultados de las simulaciones bajo las distintas condiciones de gasificación se ajustan de forma satisfactoria a los valores experimentales. Se ha encontrado que un aumento en la temperatura mejora la cantidad y la calidad del gas producido y, por tanto, la eficiencia del proceso. Un incremento del ratio equivalente reduce la concentración de CO y H2 en el gas y, en consecuencia, también su poder calorífico. Sin embargo, valores bajos del ratio equivalente disminuyen la producción de gases y la conversión de carbono. La alimentación de vapor de agua en el sistema mejora todos los parámetros analizados. Por tanto, dentro del rango estudiado, las condiciones de operación que optimizan el proceso de gasificación de lodos consisten en el empleo de mezclas aire/vapor de agua como agente gasificante, una temperatura de 850ºC y un ER de 0,3.
Resumo:
Las empresas se enfrentan en la actualidad al reto de gestionar sus Sistemas de Información controlando costes, sin por ello renunciar a las ventajas competitivas de carácter estratégico que dichos sistemas pueden aportar. Por ello, muchas firmas buscan servicios informáticos más sofisticados a la par que competitivos y no dudan en contratarlos a proveedores extranjeros, lo que conocemos por offshore outsourcing. Las empresas industriales, tradicionalmente, no han estado tan a la vanguardia como las de servicios en la gestión de sus Sistemas de Información. Es por ello que en el presente trabajo tratamos de desvelar cuál es el estado del offshore outsourcing de sistemas de información en las empresas industriales españolas, analizando sus motivaciones y potenciales reticencias.
Resumo:
Este trabajo ha sido realizado gracias a la ayuda de los proyectos CTQ2008-05520 (Ministerio de Ciencia e Innovación) y Prometeo/2009/043/FEDER (Generalitat Valenciana).
Resumo:
Valorizacion energética de residuos. Experiencia de la UA. Coincineración en cementera.
Resumo:
Se ha utilizado una planta de tratamiento a escala laboratorio consiste en un biorreactor de membrana (MBR). Esta planta está compuesta por un reactor biológico de 25 L de capacidad. Se utilizó una membrana plana de micro filtración marca Kubota de polietileno clorado, tamaño de poro 0,1 μm y área de filtración 0.116 m2. Se utilizaron como condiciones de operación: tiempo de residencia hidráulico 3 días, caudal de permeado 0.35 L/h y LMH 3 L/m2h. Se ha podido comprobar que es posible adaptar una población microbiológica a las particulares características químicas del lixiviado procedente de la planta y tratar estos lixiviados en un reactor biológico de membrana sumergida operando en condiciones habituales de sólidos en suspensión en el reactor entre 8-12 g/L durante un periodo de 6 meses. El proceso utilizado permite reducir la materia orgánica (97% DBO5 y 40% DQO) presente en estas corrientes residuales, agotando prácticamente toda la materia biodegradable. Respecto a los contenidos de nutrientes, el tratamiento MBR ensayado permite reducir de 35-40% el nitrógeno total, 45-50% el nitrógeno amoniacal y un 65-70% el fósforo total. Los sólidos en suspensión se han reducido en el efluente tratado en más de un 99%.
Resumo:
Resumen de la comunicación presentada en el I Congreso de Estudiantes de Ingeniería Química de la Universidad de Alicante, 13-14 abril 2010.
Resumo:
Se plantea la combinación binaria y ternaria de cenizas de lodo de depuradora (CLD) con ceniza volante, polvo de mármol y ceniza de cáscara de arroz, como sustitución parcial o como adición respecto al cemento Portland en hormigones, con una dosificación similar a la utilizada en la prefabricación de bloques (consistencia muy seca). Se llevaron a cabo ensayos físico-mecánicos sobre probetas de mortero y hormigón con edades de curado de 28 y 90 días: densidad, absorción y resistencia a compresión. Se comprueba que la sustitución de cemento por CLD supone una disminución de la densidad y de la resistencia respecto a la muestra patrón, sin embargo, las combinaciones con otros residuos mejoran notablemente las características de los materiales cementantes. La adición de CLD proporcionó densidades y resistencias similares a la muestra de control y reduce significativamente la absorción de agua.