878 resultados para regression discrete models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic weighing of the hopper in grape harvesters is affected by a number of factors. One of them is the displacement of the load inside the hopper as a consequence of the terrain topography. In this work, the weight obtained by a load cell in a grape harvester has been analysed and quantified using the discrete element method (DEM). Different models have been developed considering different scenarios for the terrain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. In addition to recording TOD, the cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also identified for use as the independent variables in the regression analysis. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajectory parame- ters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowledge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the common failure modes of reinforced concrete (RC) beams strengthened in flexure with a bonded fibre-reinforced polymer (FRP) is intermediate crack (IC) debonding, which is originated at a critical section in the vicinity of flexural cracks and propagates to a plate end. Despite considerable research over the last years, few reliable and simplified IC debonding strength models have been developed. This paper firstly presents a one-dimensional model based on the discrete crack approach for concrete and the spectral element method for the numerical simulation of the IC debonding process. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study area is La Colacha sub-basins from Arroyos Menores basins, natural areas at West and South of Río Cuarto in Province of Córdoba of Argentina, fertile with loess soils and monsoon temperate climate, but with soil erosions including regressive gullies that degrade them progressively. Cultivated gently since some hundred sixty years, coordinated action planning became necessary to conserve lands while keeping good agro-production. The authors had improved data on soils and on hydrology for the study area, evaluated systems of soil uses and actions to be recommended and applied Decision Support Systems (DSS) tools for that, and were conducted to use discrete multi-criteria models (MCDM) for the more global views about soil conservation and hydraulic management actions and about main types of use of soils. For that they used weighted PROMETHEE, ELECTRE, and AHP methods with a system of criteria grouped as environmental, economic and social, and criteria from their data on effects of criteria. The alternatives resulting offer indication for planning depending somehow on sub basins and on selections of weights, but actions for conservation of soils and water management measures are recommended to conserve the basins conditions, actually sensibly degrading, mainly keeping actual uses of the lands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting failures in a distributed system based on previous events through logistic regression is a standard approach in literature. This technique is not reliable, though, in two situations: in the prediction of rare events, which do not appear in enough proportion for the algorithm to capture, and in environments where there are too many variables, as logistic regression tends to overfit on this situations; while manually selecting a subset of variables to create the model is error- prone. On this paper, we solve an industrial research case that presented this situation with a combination of elastic net logistic regression, a method that allows us to automatically select useful variables, a process of cross-validation on top of it and the application of a rare events prediction technique to reduce computation time. This process provides two layers of cross- validation that automatically obtain the optimal model complexity and the optimal mode l parameters values, while ensuring even rare events will be correctly predicted with a low amount of training instances. We tested this method against real industrial data, obtaining a total of 60 out of 80 possible models with a 90% average model accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we apply count data models to four integer–valued time series related to accidentality in Spanish roads applying both the frequentist and Bayesian approaches. The time series are: number of fatalities, number of fatal accidents, number of killed or seriously injured (KSI) and number of accidents with KSI. The model structure is Poisson regression with first order autoregressive errors. The purpose of the paper is first to sort out the explanatory variables by relevance and second to carry out a prediction exercise for validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V -structures in the predictor sub-graph, we are also able to prove that this family of polynomials does indeed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replication forks formed at bacterial origins often encounter template roadblocks in the form of DNA adducts and frozen protein–DNA complexes, leading to replication-fork stalling and inactivation. Subsequent correction of the corrupting template lesion and origin-independent assembly of a new replisome therefore are required for survival of the bacterium. A number of models for replication-fork restart under these conditions posit that nascent strand regression at the stalled fork generates a Holliday junction that is a substrate for subsequent processing by recombination and repair enzymes. We show here that early replication intermediates containing replication forks stalled in vitro by the accumulation of excess positive supercoils could be cleaved by the Holliday junction resolvases RusA and RuvC. Cleavage by RusA was inhibited by the presence of RuvA and was stimulated by RecG, confirming the presence of Holliday junctions in the replication intermediate and supporting the previous proposal that RecG could catalyze nascent strand regression at stalled replication forks. Furthermore, RecG promoted Holliday junction formation when replication intermediates in which the replisome had been inactivated were negatively supercoiled, suggesting that under intracellular conditions, the action of RecG, or helicases with similar activities, is necessary for the catalysis of nascent strand regression.