971 resultados para rat tissue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOS-II) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-gamma) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-gamma and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-gamma alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroin extracted from silkworm cocoon silk provides an intriguing and potentially important biomaterial for corneal reconstruction. In the present chapter we outline our methods for producing a composite of two fibroin-based materials that supports the co-cultivation of human limbal epithelial (HLE) cells and human limbal stromal (HLS) cells. The resulting tissue substitute consists of a stratified epithelium overlying a three-dimensional arrangement of extracellular matrix components (principally ‘degummed’ fibroin fibers) and mesenchymal stromal cells. This tissue substitute is currently being evaluated as a tool for reconstructing the corneal limbus and corneal epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Myopia is a common eye disorder affecting up to 90% of children in South East Asia and 30% of the population worldwide. Myopia of high severity is a leading cause of blindness around the world (4th to 5th most common). Changes and remodelling of the sclera i.e. increase cellular proliferation & increase protein synthesis within scleral cells (↑ scleral DNA) and thinning and lose of extracellular matrix of sclera (↓ scleral GAG synthesis) have been linked to myopic eye growth in animal models. Signals acting on the sclera are thought to originate in the retina, and are modulated by the retinal pigment epithelium (RPE) with limited evidence suggesting that the RPE can modify scleral cell growth in culture. However, the mechanism of retinal signal transmission and the role of posterior eye cup tissue, including the RPE, in mediating changes in scleral fibroblast growth during myopia development are unclear. Retinal transmitter systems are critically involved in pathways regulating eye growth, which ultimately lead to alterations in the sclera if eye size is to change. A dopaminergic agonist and muscarinic antagonists decrease the proliferation of scleral chondrocytes when co-cultured with chick’s retinal pigment epithelium (RPE). GABA receptors have recently been localised to chick sclera. We therefore hypothesised that posterior eye cup tissue from myopic eyes would stimulate and from hyperopic eyes would inhibit growth of scleral fibroblasts in vitro and that GABAergic agents could directly interact with scleral cells or indirectly modify the effects of myopic and hyperopic posterior eye cup tissue on scleral fibroblast growth. Method: Fibroblastic cells obtained from 8-day-old chick sclera were used to establish cell banks. Two major experiments were performed. Experiment 1: To determine if posterior eye cup tissues from myopic eye stimulates and hyperopic eye inhibits scleral cell proliferation, when co-cultured with scleral cells in vitro. This study comprised two linked experiments, i) monocular visual treatments of FDM (form-deprivation myopia), LIM (lens-induced myopia) and LIH (lens-induced hyperopia) with assessment of the effect of full punch eye cup tissue on DNA and GAG synthesis by cultured chick scleral fibroblasts, and ii) binocular visual treatments comprising LIM and LIH with assessment of the effect of individual layers of eye cup tissues (neural retina, RPE and choroid) on cultured chick scleral fibroblasts. Visual treatment was applied for 3 days. Experiment 2: To determine the direct interaction of GABA agents on scleral cell growth and to establish whether GABA agents modify the stimulatory/inhibitory effect of myopic and hyperopic posterior eye cup tissues on cultured scleral cell growth in vitro. Two linked experiments were performed. i) GABA agonists (muscimol and baclofen) and GABA antagonists (bicuculine (-), CGP46381 and TPMPA) were added to scleral cell culture medium to determine their direct effect on scleral cells. ii) GABAergic agents (agonists and antagonists) were administered to scleral fibroblasts co-cultured with posterior eye cup tissue (retina, RPE, retina/RPE, RPE/choroid). Ocular tissues were obtained from chick eyes wearing +15D (LIH) or -15D lenses (LIM) for 3 days. In both experiments, tissues were added to hanging cell culture insert (pore size 1.0ìm) placed over each well of 24 well plates while scleral cells were cultured in DMEM/F12, Glutamax (Gibco) plus 10% FBS and penicillin/streptomycin (50U/ml)) and fungizone (1.25ug/ml) (Gibco), at seeding density of 30,000 cells/well at the bottom of the well and allowed to grow for 3 days. Scleral cells proliferation rate throughout the study was evaluated by determining GAG and DNA content of scleral cells using Dimethylmethylene blue (DMMB) dye and Quant-iTTm Pico Green® dsDNA reagent respectively. Results and analysis: Based on DNA and GAG content, there was no significant difference in tissue effect of LIM and LIH eyes on scleral fibroblast growth (DNA: 8.4 ± 1.1μg versus 9.3 ± 2.3 μg, p=0.23; GAG: 10.13 ± 1.4 μg versus 12.67 ± 1.2 μg, F2,23=6.16, p=0.0005) when tissues were obtained from monocularly treated chick eyes (FDM or +15D lens or -15D lens over right eyes with left eyes untreated) and co-cultured as full punch. When chick eyes were treated binocularly with -15D lens (LIM) right eye and +15D lens (LIH) left eyes and tissue layers were separated, the retina from LIM eyes did not stimulate scleral cell proliferation compared to LIH eyes (DNA: 27.2 ± 6.7 μg versus 23.2 ± 1.5 μg, p=0.23; GAG: 28.1 ±3.7 μg versus 28.7 ± 4.2 μg, p=0.21). Similarly, the LIH and LIM choroid did not produce a differential effect based on DNA (LIM 46.9 ± 6.4 μg versus LIH 53.5 ± 4.7 μg, p=0.18), however the choroid from LIH eyes induced higher scleral GAG content than from LIM eyes (32.5 ± 6.7 μg versus 18.9 ± 1.2 μg, p=0.023). In contrast, the RPE from LIM eyes caused a significant increase in fibroblast proliferation whereas the RPE from LIH eyes was relatively inhibitory (72.4 ± 6.3 μg versus 27.9 ± 2.3 μg, F1, 6=69.99, p=0.0005). GAG data were opposite to DNA data e.g. the RPE from LIH eyes increased (33.7 ± 7.9 μg) while the RPE from LIM eyes decreased (28.2 ± 3.0 μg) scleral cell growth (F1, 6=13.99, p=0.010). Based on DNA content, GABA agents had a small direct effect on scleral cell growth; GABA agonists increased (21.4 ± 1.0% and 18.3 ± 1.0% with muscimol and baclofen, p=0.0021), whereas GABA antagonists decreased fibroblast proliferation (-23.7 ± 0.9% with bicuculine & CGP46381 and -28.1 ± 0.5% with TPMPA, p=0.0004). GABA agents also modified the effect of LIM and LIH tissues (p=0.0005).The increase in proliferation rate of scleral fibroblasts co-cultured with tissues (RPE, retina, RPE/retina and RPE/choroid) from LIM treated eyes was enhanced by GABA agonists (muscimol: 27.4 ± 1.2%, 35.8 ± 1.6%, 8.4 ± 0.3% and 11.9 ± 0.6%; baclofen: 27.0 ± 1.0%, 15.8 ± 1.5%, 16.8 ± 1.2% and 15.4 ± 0.4%, p=0.014) whereas GABA antagonists further reduced scleral fibroblasts growth (bicuculine: -52.5 ± 2.5%, -36.9 ± 1.4%, -37.5 ± 0.6% and -53.7 ± 0.9%; TPMPA: 57.3 ± 1.3%, -15.7 ± 1.2%, -33.5 ± 0.4% and -45.9 ± 1.5%; CGP46381: -51.9 ± 1.6%, -28.5 ± 1.5%, -25.4 ± 2.0% and -45.5 ± 1.9% respectively, p=0.0034). GAG data were opposite to DNA data throughout the experiment e.g. GABA agonists further inhibited while antagonists relatively enhanced scleral fibroblasts growth for both LIM and LIH tissue co-culture. The effect of GABA agents was relatively lower (p=0.0004) for tissue from LIH versus LIM eyes but was in a similar direction. There was a significant drug effect on all four tissue types e.g. RPE, retina, RPE/retina and RPE/choroid for both LIM and LIH tissue co-culture (F20,92=3.928, p=0.0005). However, the effect of GABA agents was greatest in co-culture with RPE tissue (F18,36=4.865, p=0.0005). Summary and Conclusion: 1) Retinal defocus signals are transferred to RPE and choroid which then exert their modifying effect on scleral GAG and DNA synthesis either through growth stimulating factors or directly interacting with scleral cells in process of scleral remodeling during LIM and LIH visual conditions. 2) GABAergic agents affect the proliferation of scleral fibroblasts both directly and when co-cultured with ocular tissues in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-throughput method of isolating and cloning geminivirus genomes from dried plant material, by combining an Extract-n-Amp™-based DNA isolation technique with rolling circle amplification (RCA) of viral DNA, is presented. Using this method an attempt was made to isolate and clone full geminivirus genomes/genome components from 102 plant samples, including dried leaves stored at room temperature for between 6 months and 10 years, with an average hands-on-time to RCA-ready DNA of 15 min per 20 samples. While storage of dried leaves for up to 6 months did not appreciably decrease cloning success rates relative to those achieved with fresh samples, efficiency of the method decreased with increasing storage time. However, it was still possible to clone virus genomes from 47% of 10-year-old samples. To illustrate the utility of this simple method for high-throughput geminivirus diversity studies, six Maize streak virus genomes, an Abutilon mosaic virus DNA-B component and the DNA-A component of a previously unidentified New Word begomovirus species were fully sequenced. Genomic clones of the 69 other viruses were verified as such by end sequencing. This method should be extremely useful for the study of any circular DNA plant viruses with genome component lengths smaller than the maximum size amplifiable by RCA. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There remains a substantial shortfall in treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient, has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors; which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However cost and potential complications associated with growth factors means controlled release is an important consideration in the design of new bone tissue engineering strategies. This review will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive to develop bone grafts for the filling of major gaps in the skeletal structure has led to a major research thrust towards developing biomaterials for bone engineering. Unfortunately, from a clinical perspective, the promise of bone tissue engineering which was so vibrant a decade ago has so far failed to deliver the anticipated results of becoming a routine therapeutic application in reconstructive surgery. Here we describe the analysis of long-term bone regeneration studies in preclinical animal models, exploiting methods of micro- and nano analysis of biodegradable composite scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A higher degree of mineralization is found within scaffold groups implanted with cells compared to scaffold alone demonstrating greater bone regenerative potential of cell-scaffold constructs Tissue engineered bone analysed using ESEM and SAXS demonstrates bone formation within the scaffold to be preferentially aligned around the scaffold struts. The mineral particles are not shown to orientate around the osteons within the native bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding of mechanical behaviour of food particles will provide researchers and designers essential knowledge to improve and optimise current food industrial technologies. Understanding of tissue behaviours will lead to the reduction of material loss and enhance energy efficiency during processing operations. Although, there are some previous studies on properties of fruits and vegetables however, tissue behaviour under different processing operations will be different. The presented paper is a part of FE modelling and simulation of tissue damage during mechanical peeling of tough skinned vegetables. In this study indentation test was performed on peeled and unpeeled samples at loading rate of 20 mm/min for peel, flesh and unpeeled samples. Consequently, force deformation and stress and strain of samples were calculated. The toughness of the tissue also has been calculated and compared with the previous results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. These standard techniques face significant disadvantages. As a result, research has focused on the development of alternative therapeutic concepts aiming to design and engineer unparalleled structural and functional bone grafts. Substantial academic and commercial interest has been sparked in bone engineering methods to stimulate, control and eventually replicate key events of bone regeneration ex vivo. Over the years, this interest has further increased and bone tissue engineering has now become a well-recognized research discipline in the area of regenerative medicine. The following chapter gives an overview of bone tissue engineering principles. It focuses on research related to the combination of scaffolds with multipotent precursor cells, such as bone marrow-derived mesenchymal stem cells or human umbilical cord perivascular cells, and the clinical applications of these tissue engineered bone constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the limited availability of donor cartilage for resurfacing defects in articular surfaces, there is tremendous interest in the in vitro bioengineering of cartilage replacements for clinical applications. However, attaining mechanical properties in engineered cartilaginous constructs that approach those of native cartilage has not been previously achieved when constructs are cultured under free-swelling conditions. One approach toward stimulating the development of constructs that are mechanically more robust is to expose them to physical environments that are similar, in certain ways, to those encountered by native cartilage. This is a strategy motivated by observations in numerous short-term experiments that certain mechanical signals are potent stimulators of cartilage metabolism. On the other hand, excess mechanical loading can have a deleterious effect on cartilage. Culture conditions that include a physical stimulation component are made possible by the use of specialized bioreactors. This chapter addresses some of the issues involved in using bioreactors as integral components of cartilage tissue engineering and in studying the physical regulation of cartilage. We first consider the generation of cartilaginous constructs in vitro. Next we describe the rationale and design of bioreactors that can impart either mechanical deformation or fluid-induced mechanical signals.