988 resultados para rat plasma
Resumo:
Using NONMEM, the population pharmacokinetics of perhexiline were studied in 88 patients (34 F, 54 M) who were being treated for refractory angina. Their mean +/- SD (range) age was 75 +/- 9.9 years (46-92), and the length of perhexiline treatment was 56 +/- 77 weeks (0.3-416). The sampling time after a dose was 14.1 +/- 21.4 hours (0.5-200), and the perhexiline plasma concentrations were 0.39 +/- 0.32 mg/L (0.03-1.56). A one-compartment model with first-order absorption was fitted to the data using the first-order (FO) approximation. The best model contained 2 subpopulations (obtained via the $MIXTURE subroutine) of 77 subjects (subgroup A) and 11 subjects (subgroup B) that had typical values for clearance (CL/F) of 21.8 L/h and 2.06 L/h, respectively. The volumes of distribution (V/F) were 1470 L and 260 L, respectively, which suggested a reduction in presystemic metabolism in subgroup B. The interindividual variability (CV%) was modeled logarithmically and for CL/F ranged from 69.1% (subgroup A) to 86.3% (subgroup B). The interindividual variability in V/F was 111%. The residual variability unexplained by the population model was 28.2%. These results confirm and extend the existing pharmacokinetic data on perhexiline, especially the bimodal distribution of CL/F manifested via an inherited deficiency in hepatic and extrahepatic CYP2D6 activity.
Resumo:
The role of plasma proteins on the cellular uptake of lipophilic substrates has perplexed investigators for many years. We tested the hypothesis that an ionic interaction between the protein-ligand complex and hepatocyte surface may be responsible for supplying more ligand to the cell for uptake. The surface-charged groups on albumin were modified to yield proteins having a range of isoelectric points (ALB, ALBs, ALBm, ALBe had values of 4.8-5.0, 4.5-4.7, 3.0-3.5, 8.4-8.6, respectively). [H-3]-Palmitate uptake studies were performed with adult rat hepatocyte suspensions using similar unbound ligand fractions in the presence of the different binding proteins. Mass spectrometry, isoelectric focusing (pI), and heptane : water partitioning were used to determine protein molecular weight, pI, and protein-palmitate equilibrium binding constant, respectively. Hepatocyte [H-3]-palmitate clearance in the presence of ALBs and ALBm were significantly lower (p < 0.05) than ALB, whereas [H-3]-palmitate clearance in the presence of ALBe was significantly higher (p < 0.05) than ALB. The data were consistent with the notion that ionic interactions between extracellular protein-ligand complexes and the hepatocyte surface facilitate the uptake of long-chain fatty acids.
Resumo:
The toxicities and uptake mechanisms of two hepatotoxins, namely cylindrospermopsin and lophyrotomin, were investigated on primary rat hepatocytes by using microcystin-LIZ (a well-known hepatotoxin produced by cyanobacteria) as a comparison. Isolated rat hepatocytes were incubated with different concentrations of hepatotoxins for 0, 24, 48 and 72 h. The cell viability was assayed by the tetrazolium-based (MTT) assay. Microcystin-LR, cylindrospermopsin and lophyrotomin all exhibited toxic effects on the primary rat hepatocytes with 72-h LC50 of 8, 40 and 560 ng/ml, respectively. The involvement of the bile acid transport system in the hepatotoxin-induced toxicities was tested in the presence of two bile acids, cholate and taurocholate. Results showed that the bile acid transport system was responsible for the uptake, and facilitated the subsequent toxicities of lophyrotomin on hepatocytes. This occurred to a much lesser extent with cylindrospermopsin. With its smaller molecular weight, passive diffusion might be one of the possible mechanisms for cylindrospermopsin uptake into hepatocytes. This was supported by incubating a permanent cell line, KB (devoid of bile acid transport system), with cylindrospermopsin which showed cytotoxic effects. No inhibition of protein phosphatase 2A by cylindrospermopsin or lophyrotomin was found. This indicated that other toxic mechanisms besides protein phosphatase inhibition were producing the toxicities of cylindrospermopsin and lophyrotomin, and that they were unlikely to be potential tumor promoters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The aim of this study is to determine whether subpopulations of smooth muscle cells (SMC). as distinguished by variations in contractile and cytoskeletal proteins, appear in the neointima at different times after vascular injury, and/or whether subpopulations develop during serial passaging of these cells. Rat aortae and rabbit carotid arteries were injured with a 2F Fogarty balloon catheter and cultures established from the resulting neointima and the media 2, 6, 12, 16 and 24 weeks later. Cultures were examined at passages 1-5 and subpopulations of SMC categorised by intensity of staining for each protein by immunohistochemistry. Two populations of SMC with different staining intensities ('+ +', '+') were observed for each of the following proteins: alpha -SM actin, SM-myosin, desmin and vimentin. Populations without these proteins were also found. Changes in the percentages of cells expressing these proteins were transitory, indicating that the populations were not limited to a particular tissue (neointima or media), time after injury or passage number. One exception was found in rabbit cultures where the number of desmin-expressing cells quickly decreased with both time after injury and time in culture. Subpopulations of SMC were found at all times after injury in the media and neointima of rat and rabbit arteries, and after multiple passage of these cells. There was no pattern of development of one population suggesting that either no subpopulation has a proliferative or migratory advantage over others, or that only one population exists: that is capable of diverse phenotypic changes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Purpose: This study examined the relationship between muscle glutamine, muscle glycogen, and plasma glutamine concentrations over 3 d of high-intensity exercise during which dietary carbohydrate (CHO) intake varied. Methods: Five endurance-trained men completed two exercise trials in randomized order, over a 14-d period. Each trial required subjects to perform 50 min of high-intensity continuous and interval exercise on three consecutive days while consuming a diet that provided 45% of the energy as CHO or a diet in which CHO provided 70% of the total energy. Four days of inactivity and consumption of a 55% CHO diet separated the two randomized trials. Menus and food were provided for the subjects and all food and drink consumed were weighed and recorded for later analysis. Before exercise on the first day of each trial, at the start of exercise on day 3 and on completion of exercise on day 3, muscle was biopsied from the vastus lateralis for the analysis of glutamine and glycogen concentrations. Venous blood was sampled before and twice after exercise on each day for the analysis of plasma glutamine and cortisol concentrations. Results: Mean plasma glutamine concentration was significantly higher during the 70% CHO exercise trial when compared with the 45% CHO trial (P < 0.05). Glycogen decreased by the same magnitude during both trials and there was no relationship between changes in plasma glutamine and changes in muscle glycogen concentration. Muscle glutamine concentration did not change in either trial. Conclusions: These data suggest that the influence of carbohydrate intake upon the concentration of plasma glutamine is not mediated through the concentration of intramuscular glycogen.
Resumo:
Bone remodeling during tooth movement is regulated by local and systemic factors. Two regulators of bone metabolism are growth hormone (GH) and insulin-like growth factor-I (IGF-1). Their effects are mediated via binding to GH receptor (GHR) and IGF-I receptor (IGF-IR) in target tissues. Corticosteroids may affect the activity of these growth factors. This study examined the effect of prednisolone on GHR and IGF-IR expression in dental tissues following orthodontic tooth movement. The corti ticosteroid-treated group (N = 6) was administered prednisolone ( 1 mg/kg,) daily and the control group (N = 6) received equivalent volumes of saline. An orthodontic force (30 g) was applied to the maxillary first molar. Animals were sacrificed 12 days postappliance insertion. Sagittal sections of the first molar were stained for GHR and IGF-IR immunoreactivity. GHR and IGF-IR cell counts were elevated following appliance-treatment. Orthodontic tooth movement appeared to up-regulate GHR and IGF-IR immunoreactivity, but this up-regulation was reduced following prednisolone treatment. The suppression of GHR and IGF-I immunoreactivity in steroid-treated animals infers the mechanism whereby bone resorption and deposition, necessary for orthodontic tooth movement, may be inhibited by prednisolone. However, at 12 days postappliance insertion. no difference in orthodontic tooth movement was observed following low-dose prednisolone treatment.
Resumo:
Primary olfactory neurons that express the same odorant receptor are distributed mosaically throughout the olfactory neuroepithelium lining the nasal cavity, yet their axons converge and form discrete glomeruli in the olfactory bulb. We previously proposed that cell surface carbohydrates mediate the sorting out and selective fasciculation of primary olfactory axons en route to glomeruli. If this were the case, then axons that terminate in the same glomerulus would express the same complement of cell surface carbohydrates. In this study, we examined the expression of a novel carbohydrate (NOC-3) on neural cell adhesion molecule in the adult rat olfactory system. NOC-3 was expressed by a subset of neurons distributed throughout the olfactory neuroepithelium. The axons of these neurons entered the nerve fiber layer and terminated in a subset of glomeruli. It is interesting to note that we identified three unusually large glomeruli in the lateral, ventrolateral, and ventromedial olfactory bulb that were innervated by axons expressing NOC-3. NOC-3-expressing axons sorted out and fasciculated into discrete fascicles prior to entering these glomeruli. Each of these glomeruli was in a topographically fixed position in the olfactory bulbs of the same animal as well as in different animals, and their lengths were approximately 10% of the total length of the bulb. They could be identified reliably by both their topographical position and their unique morphology. These results reveal that axons expressing the same cell surface carbohydrates consistently target the same topographically fixed glomeruli, which supports a role for these molecules in axon navigation in the primary olfactory nerve pathway. J. Comp. Neurol. 436: 497-507, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Vesicular carriers for intracellular transport associate with unique sets of accessory molecules that dictate budding and docking on specific membrane domains. Although many of these accessory molecules are peripheral membrane proteins, in most cases the targeting sequences responsible for their membrane recruitment have yet to be identified. We have previously defined a novel Golgi targeting domain (GRIP) shared by a family of coiled-coil peripheral membrane Golgi proteins implicated in membrane trafficking. We show here that the docking site for the GRIP motif of p230 is a specific domain of Golgi. membranes. By immunoelectron microscopy of HeLa cells stably expressing a green fluorescent protein (GFP)-p230(GRIP) fusion protein, we show binding specifically to a subset of membranes of the trans-Golgi network (TGN). Real-time imaging of live HeLa cells revealed that the GFP-p230(GRIP) was associated with highly dynamic tubular extensions of the TGN, which have the appearance and behaviour of transport carriers. To further define the nature of the GRIP membrane binding site, in vitro budding assays were performed using purified rat liver Golgi membranes and cytosol from GFP-p230(GRIP) transfected cells. Analysis of Golgi-derived vesicles by sucrose gradient fractionation demonstrated that GFP-p230(GRIP) binds to a specific population of vesicles distinct from those labelled for beta -COP or gamma -adaptin. The GFP-p230(GRIP) fusion protein is recruited to the same vesicle population as full-length p230, demonstrating that the GRIP domain is solely proficient as a targeting signal for membrane binding of the native molecule. Therefore, p230 GRIP is a targeting signal for recruitment to a highly selective membrane attachment site on a specific population of trans-Golgi network tubulovesicular carriers.
Resumo:
Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis.
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.