881 resultados para predator-prey
Resumo:
Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets alpha (1)-adrenoceptors (rho -TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (chi -MrIA and chi -MrIB from the mollusk-hunting C. marmoreus). rho -TIA and chi -MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.
Resumo:
Cleaning behaviour has generally been viewed from the cleaner or client's point of view. Few studies, however, have examined cleaning behaviour from the parasites' perspective, yet they are the equally-important third players in such associations. All three players are likely to have had their evolution affected by the association. As cleaner organisms are important predators of parasites, cleaners are likely to have an important effect on their prey. Little, however, is known of how parasites are affected by cleaning associations and the strategies that parasites use in response to cleaners. I examine here what parasites are involved in cleaning interactions, the effect cleaners have on parasites, the potential counter-adaptations that parasites have evolved against the predatory activities of cleaner organisms, the potential influence of cleaners on the life history traits of parasites, and other factors affected by cleaners. I have found that a wide range of ectoparasites from diverse habitats have been reported to interact with a wide range of cleaner organisms. Some of the life history traits of parasites are consistent with the idea that they are in response to cleaner predation. It is clear, however, that although many cleaning systems exist their ecological role is largely unexplored. This has likely been hindered by our lack of information on the parasites involved in cleaning interactions.
Resumo:
The terrestrial carnivorous bladderwort, Utricularia uliginosa Vahl. (Lentibulariaceae) was studied to determine the species assemblage present in traps of these plants in situ across four sites over 15 months. The immediate soil environment was also sampled to determine the fauna present, and to compare the fauna present in traps with the fauna in the environment. The soil fauna consisted of 10 taxon types, which occupied either pelagic, epibenthic or interstitial microhabitats. All were found in traps of U. uliginosa, with the main prey being interstitial taxa followed by epibenthic and occasionally pelagic taxa. Numbers of individuals of the two most abundant soil taxa (nematodes, Elaphoidella) varied independently across the four sites over the 15 months of the study, as did numbers of Elaphoidella in the traps of U. uliginosa. Numbers of nematodes in the traps of U. uliginosa showed significant differences among sites, but not differences among times. Comparison of the trap fauna with the soil fauna revealed differences in relative abundance between soil samples and trap samples for two of the three taxa examined. There was an under-representation of nematodes in the traps relative to numbers in surrounding soil. There was an over-representation of the copepod Elaphoidella in the traps of U. uliginosa relative to numbers in soil at some of the times of sampling. Acarina were equally abundant in soil and trap samples. The patterns observed for Elaphoidella and nematodes may be due to selectivity in trapping by U. uliginosa, and/or differences in digestibility of the prey. Elaphoidella individuals were found to be attracted to U. uliginosa in a behavioural experiment. This may contribute to the over-representation of Elaphoidella in the traps of U. uliginosa in the field.
Resumo:
In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.
Resumo:
A problem with augmenting predatory bugs through mass release is the logistical difficulty of delivering nymphs onto the foliage of field crops. In this paper we examine postrelease establishment and dispersal of the nymphs of the predatory bug Pristhesancus plagipennis on soybean, cotton and sunflower in an effort to devise an appropriate strategy for field release. The effects of predator stadia and release rates on field establishment and within-crop-canopy dispersal after hand release were recorded in soybean, cotton and sunflower. Field establishment improved with the release of more-developed nymphs, with third instars providing the most appropriate compromise between field hardiness and rearing cost. Increased nymphal density at the point of release had little effect on nymphal dispersal throughout the crop canopy. The patterns of nymphal dispersal observed on the three crops suggest that crop-canopy architecture may have an effect on the ability of nymphs to spread out postrelease, as nymphs dispersed poorly in cotton and sunflower compared to soybean. To overcome poor dispersal of nymphs after release, a mechanical release method, where nymphs were mixed with vermiculite and delivered onto a target crop through a spinning disk fertiliser spreader, was tested, and provided similar nymph establishment rates and dispersal patterns as releasing nymphs individually by hand. The implications of nymph dispersal and field hardiness in regard to inundative field release techniques are discussed.
Resumo:
A total of 2071 individual prey items were identified from 34 active and 55 inactive wedge-tailed eagle nests following the 1995, 1996 and 1997 breeding seasons. Overall, the eagle's diet was comparable to that reported in other studies within semi-arid regions, with rabbits, reptiles and macropods accounting for 47.8, 22.6 and 13.7% of prey items, respectively. In spring 1996 rabbit calicivirus moved into the study area, resulting in a 44-78% reduction in rabbit abundance (Sharp et al. 2001). An index was developed to enable the time since death for individual prey items to be approximated and a historical perspective of the eagle's diet to be constructed. Rabbits constituted 56-69% of dietary items collected during the pre-rabbit calicivirus disease (RCD) samples, but declined to 31% and 16% in the two post-RCD samples. A reciprocal trend was observed for the proportion of reptiles in the diet, which increased from 8-21% of pre-RCD dietary items to 49-54% after the advent of RCD. Similarly, the proportion of avian prey items was observed to increase in the post-RCD samples. These data suggested that prey switching may have occurred following the RCD epizootic. However, a lack of data on the relative abundances of reptiles and birds prevented an understanding of the eagle's functional responses to be developed and definitive conclusions to be drawn. Nevertheless, the eagles were observed to modify their diet to the change in rabbit densities by consuming larger quantities of native prey species.
Resumo:
The drosophilid fauna is well documented in eastern Australia but is poorly known in other parts of the continent. This paper summarises what is known of this fauna in the Northern Territory (NT), and includes results from banana trapping in the humid and arid zones. The 42 recorded species include species that breed in fruit, fungi and/or flowers, and a larval predator of scale insects. Drosophilids occur in all three major climate zones (humid, semiarid and arid) but predominate in the humid zone. Banana-attracted species in the humid zone (wet-dry tropics) were common in all sampled habitats: urban, rainforest and open woodland. They included predominantly urban and/or rainforest species. Of the species collected in open woodland, some are likely to be breeding there, whereas others may have been intercepted during movement across the area. The semiarid fauna is a depauperate version of that found in the humid region. Only three species have been recorded in the arid region: an endemic arid specialist, and two cosmopolitan species (D. simulans and D. melanogaster ) in urban Alice Springs. Overall, the NT drosophilid fauna represents a depauperate version of that found in eastern Australia, probably because of climatic factors and natural barriers to range expansion. There is little evidence of regional endemism, with probably only one (and at most three) species endemic to the NT, and no evidence of independent, natural dispersion from nearby Indonesia.
Resumo:
Argyrodes Simon 1864 is a large, cosmopolitan theridiid genus whose members exhibit a wide range of foraging techniques which usually involve exploiting other spiders, either by using their webs, stealing their food, or preying on them directly. We held a symposium on this genus at the 15th International Congress of Arachnology, Badplaas, South Africa in order to obtain a clearer perspective on the relationship between the phylogeny of the genus and the different foraging techniques. We concluded that Argyrodes forms a monophyletic group within the Theridiidae, and that there are clear monophyletic clades within the genus (already identified as species groups) that appear to share behavioral characteristics. We found no clear indication that foraging behaviors such as kleptoparasitism (stealing food) evolved from araneophagy (eating spiders) or vice versa. However, it appears that species that specialize in either kleptoparasitism or araneophagy use additional techniques in comparison to species that readily use both foraging modes. During our examination of Argyrodes/host interactions we noted the importance of Nephila species as hosts of Argyrodes species around the world and the impact of Argyrodes on Nephila. We also noted the fluid nature of the relationship between Argyrodes and the spiders with which they interact. For example, an Argyrodes/host relationship can change to an Argyrodes/prey relationship, and the type of kleptoparasitic behavior employed by an Argyrodes can change when it changes host species. The importance of eating silk was also noted and identified as an area for further research. We concluded that more work involving international collaboration is needed to fully understand the phylogeny of the genus and the relationships between the different types of foraging behaviors.
Resumo:
Shoaling with familiar individuals may have many benefits including enhanced escape responses or increased foraging efficiency. This study describes the results of two complimentary experiments. The first utilised a simple binary choice experiment to determine if rainbowfish (Melanotaenia spp.) preferred to shoal with familiar individuals or with strangers. The second experiment used a free range situation where familiar and unfamiliar individuals were free to intermingle and were then exposed to a predator threat. Like many other small species of fish, rainbowfish were capable of identifying and distinguishing between individuals and choose to preferentially associate with familiar individuals as opposed to strangers. Contrary to expectations. however. rainbowrish did not significantly increase their preference for familiar individuals in the presence of a stationary predator model. Griffiths [J Fish Biol (1997) 51:489-4951 conducted similar studies under semi-natural conditions examining, the shoaling preferences of European minnows and showed similar results. Both the current study and that of Griffiths were conducted using predator wary populations of fish. It is suggested that, in predator sympatric populations, the benefits of shoaling with familiar individuals are such that it always pays to stay close to familiar individuals even when the probability If predator attack is remote.
Resumo:
The eastern shovelnose ray, Aptychotrema rostrata (Rhinobatidae), is an endemic batoid common to the east coast of Australia. The reproductive cycle was studied in Moreton Bay, south-eastern Queensland, over a 14-month period. Aptychotrema rostrata is an aplacental yolksac viviparous species with an annual, seasonal reproductive cycle in Moreton Bay. Females mature at 54-66 cm total length, and males at 60-68 cm total length. Gravid females were observed during September-November and parturition occurred in November-December. Vitellogenesis does not proceed in parallel with gestation. Ovulation and copulation probably occur during July-September, resulting in a gestational period of 3-5 months. Uterine fecundity ranges from 4 to 18, with a significant positive relationship between uterine fecundity and maternal body length. In mature males, a peak in the proportion of mature spermatocysts in the testes was observed in July, whereas gonadosomatic index peaked in April.
Resumo:
We conducted a literature review to address the potential for using a native, vertebrate predator of brown tree snakes (Boiga irregularis) as a biological control method on Guam. Both actual and potential predators were included in our review. We located two actual predators (red-bellied black snakes (Pseudechis porphyriacus) and cane toads (Bufo marinus)) and 55 potential predators of brown tree snakes. However, none of the native predators of brown tree snakes appear likely candidates as a biological control method on Guam due to their lack of selectivity in their feeding habits and unknown aspects of their natural history. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This study (1) investigated functional (capture rate, foraging success) and numerical (density) responses of bar-tailed godwits Limosa lapponica to an experimental decrease in densities of their prey, and (2) estimated seasonal depletion of the stock of their main prey, the mictyrid crab Mictyris longicarpus, in a subtropical estuary. It was predicted that if intake rates of the godwits are in the vicinity of the gradient section of a functional response curve, i.e. are directly determined by prey density, they will respond rapidly to experimental reduction in the density of their prey. Bar-tailed godwits did respond rapidly, both functionally and numerically, to a decrease in the density of M longicarpus, indicating that their intake rate was limited by food availability. The estimated seasonal depletion of the stocks of Mictyris by the godwits was 88 % of the initial standing stock. Despite the virtual disappearance of Mictyris from sediment samples through the course of a non-breeding season, local densities of godwits did not change between October and March, implying that adequate rates of intake could be maintained throughout their residence period.
Resumo:
Colour pattern variation is a striking and widespread phenomenon. Differential predation risk between individuals is often invoked to explain colour variation, but empirical support for this hypothesis is equivocal. We investigated differential conspicuousness and predation risk in two species of Australian rock dragons, Ctenophorus decresii and C. vadnappa. To humans, the coloration of males of these species varies between 'bright' and 'dull'. Visual modelling based on objective colour measurements and the spectral sensitivities of avian visual pigments showed that dragon colour variants are differentially conspicuous to the visual system of avian predators when viewed against the natural background. We conducted field experiments to test for differential predation risk, using plaster models of 'bright' and 'dull' males. 'Bright' models were attacked significantly more often than 'dull' models suggesting that differential conspicuousness translates to differential predation risk in the wild. We also examined the influence of natural geographical range on predation risk. Results from 22 localities suggest that predation rates vary according to whether predators are familiar with the prey species. This study is among the first to demonstrate both differential conspicuousness and differential predation risk in the wild using an experimental protocol. (C) 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.
Resumo:
Most species of lizards will shed their tails at the point of contact when grasped by a predator. We investigated the energetic consequences of tail loss by measuring lipids in a scincid lizard that stores energy in its tail for reproduction. Most of the lipids were concentrated in the proximal portion of the tail. Thus, partial tail loss may not severely affect energy stores if the distal portion of the tail is shed in predatory encounters. We also found that the width of the tail was a reliable non-invasive index of energy reserves in this species. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
A new macropodiniid ciliate genus, Megavestibulum, is described which is endocommensal in the stomach of macropodid marsupials. Two new species, M. morganorum and M. kuhri, are described from Macropus dorsalis and Wallabia, bicolor respectively. Megavestibulum is holotrichous, the somatic ciliation arranged into meridional, curving kineties between broad ridges. The interkinetal ridges are lined apically by thick-walled vacuoles similar to those lining the longitudinal grooves of Macropodinium. The conical vestibulum is apical and very large, occupying up to 1/3 of the cell volume. The vestibular lip appears closable and has a cleft which may allow distention of the vestibullum to ingest large food items. The vestibular ultrastructure is similar to that of Macropodinium including the presence of vestibular vacuoles and the hemispherical differentiation of the distribution of small nematodesmata. Many specimens contained ingested whole ciliates of the genera Amylovorax and Polycosta. The structure of the vestibulum suggests that Megavestibulum is adapted for life as an active predator of other stomach ciliates as well as sweeping in small particulates. The morphology of Megavestibulum suggests that it represents the plesiomorphic body plan within the family Macropodiniidae.