918 resultados para pre-treatment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Minocycline possesses anti-inflammatory properties independently of its antibiotic activity although the underlying molecular mechanisms are unclear. Lipopolysaccharide (LPS)-induced cytokines and pro-inflammatory protein expression are reduced by minocycline in cultured macrophages. Here, we tested a range of clinically important tetracycline compounds (oxytetracycline, doxycycline, minocycline and tigecycline) and showed that they all inhibited LPS-induced nitric oxide production. We made the novel finding that tigecycline inhibited LPS-induced nitric oxide production to a greater extent than the other tetracycline compounds tested. To identify potential targets for minocycline, we assessed alterations in the macrophage proteome induced by LPS in the presence or absence of a minocycline pre-treatment using 2-DE and nanoLC-MS. We found a number of proteins, mainly involved in cellular metabolism (ATP synthase ß-subunit and aldose reductase) or stress response (heat shock proteins), which were altered in expression in response to LPS, some of which were restored, at least in part, by minocycline. This is the first study to document proteomic changes induced by minocycline. The observation that minocycline inhibits some, but not all, of the LPS-induced proteomic changes shows that minocycline specifically affects some signalling pathways and does not completely inhibit macrophage activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An in vitro mouse slice preparation from control and MPTP-treated mice in which functional reciprocal GP-STN connectivity is maintained, does not produce oscillatory bursting or synchronous activity neuronal activity. Pharmacological interventions that produce bursting activity do so without concomitant neuronal synchrony, or a requirement for glutamate or GABA transmission. Pre-treatment with MPTP did not alter this behaviour. Thus, we have no evidence that the functionally connected, but isolated, GP — STN network can act as a pacemaker for synchronous correlated activity in the basal ganglia and must conclude that other inputs such as those from cortex and/or striatum are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dimethyl-xanthine derivative pentoxifylline (PTX) increases blood flow through capillaries. In elderly humans the drug leads to improvement in a number of imapired neuropsychological parameters. We now report that oral administration to 29-month female mice (C57, black and tan) over six days induced four different patterns of behavioural reponse: (1) consistent improvement in grooming behaviour throughout the six day trial; (2) significant improvement in light/dark zone curiosity and curiosity towards a strange object on day three, which declined but remained significantly above pre-treatment levels at day 6; (3) an improvement in general activity which only becomes detectable on day six; (4) a significant improvement in rod-walking, rearing an shuttle-box crosses on day three which returned to pre-treatment levels by day 6. Age-related deficits in general activity, grooming and curiosity were completely eliminated by the drug - the mean group performance levels attained those seen in 9-12 month individuals of this strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The experiments described in this thesis compared conventional methods of screening for neurotoxins with potential electrophysiological and pharmacological tests in an attempt to improve the sensitivity of detection of progressive distal neuropathy. Adult male albino mice were dosed orally with the neurotoxicant acylamide and subjected to a test of limb strength and co-ordination and a functional observational battery. These methods established a no observable effect level of 10 mg/kg. A dose of 200 mg/kg resulted in abnormalities of gait and reduced limb strength and/or co-ordination. Analysis of the in vitro 'jitter' of the latency of trains of action potentials evoked at a frequency of 30 Hz in the mouse phrenic nerve/hemidiaphragm preparation showed this technique to be unsuitable for detection of the early phases of acrylamide induced peripheral neuropathy (l00 mg/kg). The evoked and spontaneous twitch responses of the hemidiaphragm preparation following in vitro exposure to the organophosphorous anticholinesterase compound ecothiopate were altered by in vivo pre treatment with acrylamide. Acrylamide caused an increase in the time course of the potentiation of stimulated twitches and a decrease in the maximum potentiation. Spontaneous twitches were reduced in amplitude and frequency. These effects occurred at an acrylamide dose level insufficient to cause clinical signs of neuropathy. Investigations into the mechanisms underlying these observations yielded the following observations. Analysis of miniature endplate potentials at this dose level indicated prolongation of the life of acetylcholine in the synaptic cleft but the implied decrease in cholinesterase activity could not be demonstrated biochemically or histologically. The electrical excitability of the nerve terminal region of phrenic motor nerves was reduced following acrylamide although a possible compromise of antidromic action potential conduction could not be confirmed. There was no histopathological evidence of neuropathy at this dose level. Further exploration of this phenomenon is desirable in order to ascertain whether the effect is specific to acrylamide and/or ecothiopate and to elucidate the mechanisms behind these novel observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concanavalin A, provoked a 35-fold increase in the rate of proliferation of rat thymocytes. Insulin (10-6M), and insulin-like growth factor I (10-10M) approximately doubled the rate of DNA synthesis. Both of these structurally related molecules acted through the type I insulin-like growth factor receptor. The sequential addition of Concanavalin A and insulin, promoted a much greater proliferative response than to either of the two agonists alone. Insulin also increased the uptake of glucose and amino acids by the cells. Glucose uptake was enhanced at insulin concentrations of 10-6M and 10-10M. Amino acid uptake was more strongly affected at the higher concentration. Insulin-like growth factor I (10-11M) also enhanced amino acid uptake. The effects of insulin on metabolism were mediated by both insulin and type I insulin-like growth factor receptors. These effects were greatly enhanced after a pre-treatment with Concanavalin A. Concanavalin A provided a primary mitogenic signal to the cells. Amongst the responses was an increased expression of insulin and/or type I insulin-like growth factor receptors. The consequent enhanced cellular sensitivity to these agonists, enabled them to facilitate the passage of the cells through the cell cycle by: i) providing a secondary mitogenic signal, and ii) promoting the uptake of raw materials and energy substrates. The initiation of DNA synthesis and passage through the cell cycle was thus punctuated by the sequential expression of various cell surface receptors. This regulated cellular sensitivity, enabling them to react in a precisely orchestrated fashion to hormones and other molecules in their environment. The intracellular mechanism of insulin action remains an enigma. Although the presence of extracellular calcium was essential for insulin stimulation of amino acid uptake and DNA synthesis, the cation did not subserve a direct mediator function. Insulin promoted an increase in intracellular pH, which was mediated by the Na+/H+ antiport. Other mechanisms were probably also involved in mediating the full cellular response to insulin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The industrial solvent N, N-dimethylformamide (DMF) causes liver damage in humans. The hepatotoxicity of N-alkylformamides seems to be linked to their metabolism to N-alkylcarbamic acid thioesters. To clarify the role of metabolism in DMF hepatotoxicity, the metabolic fate of DMF was investigated in rodents. DMF was rapidly metabolised and excreted in the urine as N-hydroxymethyl-N-methyl-formamide (HMMF), N-acetyl-S-(N-methylcarbamoyl) cysteine (AMCC) and a metabolite measured as formamide by GLC. At high doses (0.7 and 7.0mmo1/kg) a small proportion of the dose was excreted unchanged. AMCC, measured by GLC after derivatisation to ethyl N-methylcarbamate, was a minor metabolite. Only 5.2% of the dose (0.1mmo1/kg) in rats or 1.2% in mice was excreted as AMCC. The minor extent of this metabolic pathway in rodents might account for the marginal liver damage induced by DMF in these species. In a collaborative study, volunteers were shown to metabolise DMF to AMCC to a greater extent than rodents. Nearly 15% of the inhaled dose (0.049mmo1/kg) was excreted as AMCC. This result suggests that the metabolic pathway leading to AMCC is more important in humans than in rodents. Consequently the risk associated with exposure to DMF might be higher in humans than in rodents. The metabolism of formamides to S-(N-alkylcarbamoyl) glutathione, the metabolic precursor of the thioester mercapturates, was studied using mouse, rat and human hepatic microsomes. The metabolism of NMF (10mM) to S-(N-methylcarbanoyl)glutathione (SMG) required the presence of GSH, NADPH and air. Generation of S-(N-methyl-carbamoyl)glutathione (SMG) was inhibited when incubations were conducted in an atmosphere of CO:air (1:1) or when SKF 525-A (3.0mM) was included in the incubations. Pre-treatment of mice with phenobarbitone (PB, 80mg/kg for 4 days) or beta-naphthoflavone (BNF, 50mg/kg for 4 days) failed to increase the microsomal formation of SMG from NMF. This result suggests that the oxidation of NMF is catalysed by a cytochrome P-450 isozyme which is unaffected by PB or BNF. Microsomal incubations with DMF (5 or 10mM) failed to generate measurable amounts of SMG although DMF was metabolised to HMMF. Incubations of microsomes with HMMF resulted in the generation of a small amount of SMG which was affected by inhibitors of microsomal enzymes in the same way as in the case of NMF. HMMF was metabolised to AMCC by rodents in vivo. This result suggests that HMMF is a major intermediate in the metabolic activation of DMF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is concerned with the role of /3-cell cytoskeletal proteins in the mechanism of insulin release from islets of experimental animals, the Aston obese diabetic hyperglycaemic (ob/ob) mouse and their lean littermates and the cultural insulin secreting /?-cell lines, HIT-TT5 and RINm5F. Investigations were carried out into the glucose induced insulin response of the lean and obese mouse islets and HIT-TI5 cells and the D-glyceraldehyde response of RINm5F cells using a static incubation system. Colchicine was found to inhibit insulin release from both lean and obese mouse islets more significantly than cultured TTT-TI5 and RINm5F cells. (Colchicine pre-treatment also inhibited the second phase of insulin release from perifused lean mouse islets and HIT-TI5 cells). Cytocha-lasin B, used to investigate the role of the microfilamentous system in the mechanism of insulin release enhanced insulin release from both lean and obese mouse islets to a significantly greater degree than that from cultured HIT-TI5 and RINm5F cells. Pre-treatment of isolated lean and obese mouse islets and cultured /?-cells with a combination of colchicine and cytochalasin B significantly reduced the insulin response of the HIT-TI5 and RINm5F cells compared with the control values suggesting that intact microtubules are more important for the sustained release of insulin than the microfilamentous system. However, the response was not so clearly defined with the lean and obese mouse islets. Tubulin was separated from the extracts of lean mouse islets and the HIT-TI5 and RINm5F cells and actin was separated from all of the cell types including the obese mouse islets by SDS- polyacrylamide electrophoresis. A tubulin radioimmunoassay and a colchicine binding assay were developed to measure the tubulin content of lean and obese mouse islets, and the shift between the proportions of tubulin dimers and polymerized tubulin under stimulatory and non-stimulatory conditions. The assay methods developed were not prone to be accurate, sensitive and precise but gave some indication of the shift from unpolymerised to polymerised tubulin during glucose stimulated insulin release. These studies show that microtubules do play a fundamental role in the mechanism of insulin release from both islets and cultured HIT-TI5 and RINm5F cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An examination was made of the morphological transitions induced in human erythrocytes by the elevation of cytosolic calcium, and of the biochemical mechanisms responsible. The loss of the discocyte morphology and the sequential progression of cells through the echinocyte stages 1, 2, 3 and sphereo-echinocyte was found to occur in both a calcium concentration- and a time-dependent manner. SDS-PAGE analysis of cytoskeletal proteins prepared from intact cells loaded with 150uM or 1mM calcium revealed the partial proteolytic loss of proteins 2.1, 2.2 and 4.1. The rate of proteolysis was not paralleled by that of echinocytosis, making a causative relationship unlikely. Cytoskeletal integrity did appear to influence shape reversal from the echinocyte to the discocyte morphology after removal of the calcium and ionophore A23187. The loss of 80% protein 4.1, 40% 2.1 and 30% 2.2 was associated with, although not necessarily the sole cause, of irreversible sphereo-echinocytosis. Pre-treatment of cells with wheat germ agglutinin preserved the discocyte morphology despite continued cytoskeletal proteolysis during calcium-loading. All observations were made on cells incubated either in the presence or absence of glycolytic substrates, effectively altering cell metabolic status. This influenced the rate of progression of cells through the echinocyte stages, the rate of proteolysis of cytoskeletal proteins, and the extent and kinetics of shape reversal from cells transformed to the sphereo-echinocyte morphology. The stage 1 to discocyte transition was the rate limiting step of this shape recovery. In contrast the rate of loss of the discocyte morphology was independent of cell metabolic status during exposure to calcium, as was the extent of restoration of the discocyte morphology from cells transformed to stage 1 echinocytes. An hypothesis is presented that echinocytosis is a discontinuous process with discrete steps initiated by different biochemical mechanisms varying in their dependence on metabolic energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human arythrocytes were used as a model system for an investigation of the mechanism of action of the antiproliferative drug Adriamycin. Erythrocytes were induced to undergo a change in morphology by elevation of intracellular calcium. It was revealed that the widely used media employed for the study of morphological change were unsuitable; a new incubation medium was developed so that cells were metabolically replete. In this medium echinocytosis took place both in a calcium concentration- and time-dependent manner. Pretreatment of erythrocytes with Adriamycin (10 M for 10 mins) protected the erythrocytes against calcium-induced echinocytosis at calcium concentrations < 150M. SDS-PAGE analysis of the cytoskeletal proteins prepared from erythrocytes revealed the calcium-induced proteolysis of two main cytoskeletal proteins: band 2:1 and band 4:1. Only the rate of the proteolysis of band 2.1 correlated with the onset of echinocytosis. Adriamycin inhibited the breakdown of band 2.1 even when the cells formed echinocytes; this raises doubts concerning the importance of band 2.1 in the maintenance of discocyte morphology. Adriamycin only marginally inhibited the purified calcium-activated thio protease (calpain). Calcium-loading of human erythrocytes increased the phosphorylation of several major cytoskeletal proteins including pp120, band 3, band 4.1 and band 4.9. The pattern of increase resembled that induced by 12-0-tetradecanoyl-phorbol-13-acetate. Pre-treatment with Adriamycin prior to calcium loading caused a general lowering of basal phosphorylation. Adriamycin had no effect on the activity of the calcium-activated phospholipid-dependent protein kinase (protein kinase C). A hypothesis is put forward that the morphological transition of erythrocytes might be dependent upon the activity of a contractile system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study concerns the production and action of the local mediators nitric oxide (NO) and prostaglandin E2 (PGE2) in the rat gastric mucosa. The major objectives were: (i) to determine which mucosal cell type(s) contained NO synthase activity, (ii) to establish the functional role(s) of NO in the gastric mucosa and (iii) to investigate regulation of gastric PGE2 production. Gastric mucosal cells were isolated by pronase digestion coupled with intermittent calcium chelation and were separated by either density-gradient centrifugation or by counterflow elutriation. The distribution of Ca2+ -dependent NO synthase activity, measured via the conversion of [14C]-L-arginine to [14C]-L- citrulline, paralleled the distribution of mucous cells in elutriated fractions. Pre-treatment of rats with lipopolysaccharide caused the induction of Ca2+ -independent NO synthase in the elutriator fractions enriched with mucous cells. Incubation of isolated cells with the NO donor isosorbide dinitrate (ISDN) produced a concentration-dependent increase in the guanosine 3',-5'-cyclic monophosphate (cGMP) content which was accompanied by a concentration-dependent increase in release of immunoreactive mucin. Intragastric administration of ISDN of dibutyryl cGMP in vivo increased the thickness of the mucus layer overlying the gastric mucosa. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) produced a concentration-dependent inhibition (IC50 247 μM) of histamine-stimulated aminopyrine accumulation, a measure of secretory activity, in cell suspensions containing > 80% parietal cells. SNAP increased the cGMP content of the suspension but did not decrease cellular viability, glucose oxidation or adenosine 3',5'-cyclic monophosphate content. The inhibitory effect of SNAP was observed in permeabilised cells stimulated with ATP and was stereospecifically blocked by preincubation with Rp-8-bromoguanosine 3'-5'-monophosphorothioate, which inhibits activation of cGMP-dependent protein kinase. Stimulation of PGE2 release by bradykinin in a low density cell fraction, enriched with parietal cells and devoid of vascular endothelial cells and macrophages, involved a bradykinin B1 receptor. In summary, NO synthase activity is probably present in gastric mucous epithelial cells. NO may promote mucus secretion by elevation of cGMP. NO donors inhibit acid secretion at a specific site and their action may involve cGMP. The bradykinin B1 receptor is involved with PGE2 production in the gastric mucosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drying is a major and challenging step in the pre-treatment of biomass for production of second generation synfuels for transport. The biomass feedstocks are mostly wet and need to be dried from 30 to 60 wt% moisture content to about 10-15 wt%. The present survey aims to define and evaluate a few of the most promising optimised concepts for biomass pre-treatment scheme in the production of second generation synfuels for transport. The most promising commercially available drying processes were reviewed, focusing on the applications, operational factors and emissions of dryers. The most common dryers applied now for biomass in bio-energy plants are direct rotary dryers, but the use of steam drying techniques is increasing. Steam drying systems enable the integration of the dryer to existing energy sources. In addition to integration, emissions and fire or explosion risks have to be considered when selecting a dryer for the plant. In steam drying there will be no gaseous emissions, but the aqueous effluents need often treatment. Concepts for biomass pre-treatment were defined for two different cases including a large-scale wood-based gasification synfuel production and a small-scale pyrolysis process based on wood chips and miscanthus bundles. For the first case a pneumatic conveying steam dryer was suggested. In the second case the flue gas will be used as drying medium in a direct or indirect rotary dryer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 . - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 . - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. © 2013 Dias et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .