913 resultados para port waters
Resumo:
Nitrogen flows from European watersheds to coastal marine waters Executive summary Nature of the problem • Most regional watersheds in Europe constitute managed human territories importing large amounts of new reactive nitrogen. • As a consequence, groundwater, surface freshwater and coastal seawater are undergoing severe nitrogen contamination and/or eutrophication problems. Approaches • A comprehensive evaluation of net anthropogenic inputs of reactive nitrogen (NANI) through atmospheric deposition, crop N fixation,fertiliser use and import of food and feed has been carried out for all European watersheds. A database on N, P and Si fluxes delivered at the basin outlets has been assembled. • A number of modelling approaches based on either statistical regression analysis or mechanistic description of the processes involved in nitrogen transfer and transformations have been developed for relating N inputs to watersheds to outputs into coastal marine ecosystems. Key findings/state of knowledge • Throughout Europe, NANI represents 3700 kgN/km2/yr (range, 0–8400 depending on the watershed), i.e. five times the background rate of natural N2 fixation. • A mean of approximately 78% of NANI does not reach the basin outlet, but instead is stored (in soils, sediments or ground water) or eliminated to the atmosphere as reactive N forms or as N2. • N delivery to the European marine coastal zone totals 810 kgN/km2/yr (range, 200–4000 depending on the watershed), about four times the natural background. In areas of limited availability of silica, these inputs cause harmful algal blooms. Major uncertainties/challenges • The exact dimension of anthropogenic N inputs to watersheds is still imperfectly known and requires pursuing monitoring programmes and data integration at the international level. • The exact nature of ‘retention’ processes, which potentially represent a major management lever for reducing N contamination of water resources, is still poorly understood. • Coastal marine eutrophication depends to a large degree on local morphological and hydrographic conditions as well as on estuarine processes, which are also imperfectly known. Recommendations • Better control and management of the nitrogen cascade at the watershed scale is required to reduce N contamination of ground- and surface water, as well as coastal eutrophication. • In spite of the potential of these management measures, there is no choice at the European scale but to reduce the primary inputs of reactive nitrogen to watersheds, through changes in agriculture, human diet and other N flows related to human activity.
Resumo:
Port of Spain, Trinidad offers an ideal context in which to analyze pre-retirement return migration to a Global South urban realm, expanding transnational urban research beyond the conventional focus on Global North metropolitan destinations. In this article, we draw on the transnational narratives of a selected sample of relatively youthful Trinidadians, who have spent many years abroad acquiring education and professional experience, but who have then decided to return in mid-career to the capital region of the island nation of their birth, or of their parent(s). Theoretically, we position these returning professionals as members of a "middling" transnational urban class whose return is at least partly motivated by a desire to "make a difference." Our results contribute to a growing literature that documents the role of transnational middle-class urban elites returning elsewhere in the Carribbean: "middling" transnational urbanism is reshaping key facets of urbanization in the Global South.
Resumo:
This paper reviews the ways that quality can be assessed in standing waters, a subject that has hitherto attracted little attention but which is now a legal requirement in Europe. It describes a scheme for the assessment and monitoring of water and ecological quality in standing waters greater than about I ha in area in England & Wales although it is generally relevant to North-west Europe. Thirteen hydrological, chemical and biological variables are used to characterise the standing water body in any current sampling. These are lake volume, maximum depth, onductivity, Secchi disc transparency, pH, total alkalinity, calcium ion concentration, total N concentration,winter total oxidised inorganic nitrogen (effectively nitrate) concentration, total P concentration, potential maximum chlorophyll a concentration, a score based on the nature of the submerged and emergent plant community, and the presence or absence of a fish community. Inter alia these variables are key indicators of the state of eutrophication, acidification, salinisation and infilling of a water body.
Resumo:
Limnologists had an early preoccupation with lake classification. It gave a necessary structure to the many chemical and biological observations that were beginning to form the basis of one of the earliest truly environmental sciences. August Thienemann was the doyen of such classifiers and his concept with Einar Naumann of oligotrophic and eutrophic lakes remains central to the world-view that limnologists still have. Classification fell into disrepute, however, as it became clear that there would always be lakes that deviated from the prescriptions that the classifiers made for them. Continua became the de rigeur concept and lakes were seen as varying along many chemical, biological and geographic axes. Modern limnologists are comfortable with this concept. That all lakes are different guarantees an indefinite future for limnological research. For those who manage lakes and the landscapes in which they are set, however, it is not very useful. There may be as many as 300000 standing water bodies in England and Wales alone and maybe as many again in Scotland. More than 80 000 are sizable (> 1 ha). Some classification scheme to cope with these numbers is needed and, as human impacts on them increase, a system of assessing and monitoring change must be built into such a scheme. Although ways of classifying and monitoring running waters are well developed in the UK, the same is not true of standing waters. Sufficient understanding of what determines the nature and functioning of lakes exists to create a system which has intellectual credibility as well as practical usefulness. This paper outlines the thinking behind a system which will be workable on a north European basis and presents some early results.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.
Resumo:
Careful examination of the probable natural conditions for travel in the North Sea and Irish Sea during the late Mesolithic are here combined with the latest radiocarbon dates to present a new picture of the transition to the Neolithic in the British Isles. The islands of the west were already connected by Mesolithic traffic and did not all go Neolithic at the same time. The introduction of the Neolithic package neither depended on seaborne incomers nor on proximity to the continent. More interesting forces were probably operating on an already busy seaway.
Resumo:
Total phosphorus (TP) and soluble reactive phosphorus (SRP) loads to watercourses of the River Basin Districts (RBDs) of Great Britain (GB) were estimated using inventories of industrial P loads and estimates of P loads from sewage treatment works and diffuse P loads calculated using region-specific export coefficients for particular land cover classes combined with census data for agricultural stocking densities and human populations. The TP load to GB waters was estimated to be 60 kt yr(-1), of which households contributed 73, agriculture contributed 20, industry contributed 3, and 4 came from background sources. The SRP load to GB waters was estimated to be 47 kt yr(-1), of which households contributed 78, agriculture contributed 13, industry contributed 4, and 6 came from background Sources. The 'average' area-normalized TP and SRP loads to GB waters approximated 2.4 kg ha(-1) yr(-1) and 1.8 kg ha(-1) yr(-1), respectively. A consideration of uncertainties in the data contributing to these estimates suggested that the TP load to GB waters might lie between 33 and 68 kt yr(-1), with agriculture contributing between 10 and 28 of the TP load. These estimates are consistent with recent appraisals of annual TP and SRP loads to GB coastal waters and area-normalized TP loads from their catchments. Estimates of the contributions of RBDs to these P loads were consistent with the geographical distribution of P concentrations in GB rivers and recent assessments of surface waters at risk from P Pollution.
Resumo:
Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less dry than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, wet runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.
Resumo:
The exact pattern, process and timing of the human re-colonization of northern Europe after the end of the last Ice Age remain controversial. Recent research has provided increasingly early dates for at least pioneer explorations of latitudes above 54°N in many regions, yet the far north-west of the European landmass, Scotland, has remained an unexplained exception to this pattern. Although the recently described Hamburgian artefacts from Howburn and an assemblage belonging to the arch-backed point complex from Kilmelfort Cave have established at least a sporadic human presence during earlier stages of the Lateglacial Interstadial, we currently lack evidence for Younger Dryas/Greenland Stadial 1 (GS-1) activity other than rare stray finds that have been claimed to be of Ahrensburgian affiliation but are difficult to interpret in isolation. We here report the discovery of chipped stone artefacts with technological and typological characteristics similar to those of the continental Ahrensburgian at a locality in western Scotland. A preliminary analysis of associated tephra, pollen and phytoliths, along with microstratigraphic analysis, suggest the artefacts represent one or more episodes of human activity that fall within the second half of GS-1 and the Preboreal period
Resumo:
We develop a new governance perspective on port–hinterland linkages and related port impacts. Many stakeholders in a port’s hinterland now demand tangible economic benefits from port activities, as a precondition for supporting port expansion and infrastructural investments. We use a governance lens to assess this farsighted contracting challenge. We find that most contemporary economic impact assessments of port investment projects pay scant attention to the contractual relationship challenges in port-hinterland relationships. In contrast, we focus explicitly on the spatial distribution of such impacts and the related contractual relationship issues facing port authorities or port users and their stakeholders in the port hinterland. We introduce a new concept, the Port Hinterland Impact (PHI) matrix, which focuses explicitly on the spatial distribution of port impacts and related contractual relationship challenges. The PHI matrix offers insight into port impacts using two dimensions: logistics dedicatedness, as an expression of Williamsonian asset specificity in the sphere of logistics contractual relationships, and geographic reach, with a longer reach typically reflecting the need for more complex contacting to overcome ‘distance’ challenges with external stakeholders. We use the PHI matrix in our empirical, governance-based analysis of contractual relationships between the port authorities in Antwerp and Zeebrugge, and their respective stakeholders.