967 resultados para plasma transport processes
Resumo:
Protons and electrons are being exploited in different natural charge transfer processes. Both types of charge carriers could be, therefore, responsible for charge transport in biomimetic self-assembled peptide nanostructures. The relative contribution of each type of charge carrier is studied in the present work for fi brils self-assembled from amyloid- β derived peptide molecules, in which two non-natural thiophene-based amino acids are included. It is shown that under low humidity conditions both electrons and protons contribute to the conduction, with current ratio of 1:2 respectively, while at higher relative humidity proton transport dominates the conductance. This hybrid conduction behavior leads to a bimodal exponential dependence of the conductance on the relative humidity. Furthermore, in both cases the conductance is shown to be affected by the peptide folding state under the entire relative humidity range. This unique hybrid conductivity behavior makes self-assembled peptide nanostructures powerful building blocks for the construction of electric devices that could use either or both types of charge carriers for their function.
Resumo:
Particles with energies of tens to hundreds of keV provide a powerful diagnostic of the acceleration processes that characterise the Earth’s magnetosphere, in particular the highly dynamic nightside plasma sheet. Such energetic particles can be detected by the RAPID experiment, onboard the quartet of Cluster spacecraft. We present results from the study of a series of quasi-periodic, intense energetic electron signatures in the magnetotail revealed by RAPID Imaging Electron Spectrometer (IES) observations some 19 Earth radii (RE) downtail, associated with the passage of a highly geoeffective, high-speed solar wind stream. The RAPID-IES signatures – interpreted in combination with magnetic field and lower-energy electron measurements from the FGM and PEACE experiments on Cluster, respectively, and with reference to energetic electron observations from the CEPPAD-IES instrument on Polar – are understood in terms of repeated encounters of the Cluster spacecraft with the tail plasma sheet in response to the resultant tail reconfiguration in each of a series of substorms. We consider the Cluster response for two of these substorms (identified according to the conventional expansion phase onset indicators of particle injection at geosynchronous orbit and Pi2 pulsations at Earth) in terms of two possible tail configurations in which a Near-Earth Neutral Line forms either antisunward or sunward of the Cluster spacecraft. The latter scenario, in which the reconnection X-line is assumed to form sunward of Cluster and subsequently migrate downtail such that the spacecraft become engulfed in a tailward expanding plasma sheet, is shown to be more consistent with the observations.
Resumo:
We study here the injection and transport of ions in the convection-dominated region of the Earth’s magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001) survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992). The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of _1 keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convectionrelated time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by nonreconnection coupling. At higher energies (_2–20 keV), we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence the location and behaviour of the plasma populations in the magnetosphere.
Resumo:
During the substorm growth phase, magnetic reconnection extracts ~10^15 J from the solar wind through magnetic reconnection at the magnetopause, which is then stored in the magnetotail lobes. Plasma sheet pressure then increases to balance magnetic flux density increases in the lobes. We examine plasma sheet pressure, density and temperature during substorm growth phases using nine years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG SML auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities and how this relates to the onset and size of the subsequent substorm expansion phase.
Resumo:
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
Resumo:
The paper discusses how variations in the pattern of convective plasma flows should beincluded in self-consistent time-dependent models of the coupled ionosphere-thermosphere system. The author shows how these variations depend upon the mechanism by which the solar wind flow excites the convection. The modelling of these effects is not just of relevance to the polar ionosphere. This is because the influence of convection is not confined to high latitudes: the resultant heating and composition changes in the thermosphere are communicated to lower latitudes by the winds which are also greatly modified by the plasma convection. These thermospheric changes alter the global distribution of plasma by modulatingthe rates of the chemical reactions which areresponsible for the loss of plasma. Hence the modelling of these high-latitude processes is of relevanceto the design and operation of HF communication, radar and navigation systems worldwide.
Resumo:
In the auroral zone, ionospheric plasma often moves horizontally at more than 1 km s−1, driven by magnetospheric electric fields, but it has usually been assumed that vertical velocities are much smaller. On occasions, however, plasma has been seen to move upwards along the magnetic field line at several hundred m s−1. These upward velocities are associated with electric fields strong enough to heat the ion population and drive it into a non-thermal state1,2. Here we report observations of substantial upwards acceleration of plasma, to velocities as high as 500 m s−1. An initial upthrust was provided by a combined upwelling of the neutral atmosphere and ionosphere but the continued acceleration at greater heights is explained by a combination of enhanced plasma pressure and the 'hydrodynamic mirror force'3. This acceleration marks an important stage in the transport of plasma from the ionosphere into the magnetosphere.
Resumo:
In unstimulated cells, proteins of the nuclear factor kappaB (NF-kappaB) transcription factor family are sequestered in the cytoplasm through interactions with IkappaB inhibitor proteins. Tumor necrosis factor alpha (TNF-alpha) activates the degradation of IkappaB-alpha and the nuclear import of cytoplasmic NF-kappaB. Nuclear localization of numerous cellular proteins is mediated by the ability of the cytoskeleton, usually microtubules, to direct their perinuclear accumulation. In a former study we have shown that activated NF-kappaB rapidly moves from distal processes in neurons towards the nucleus. The fast transport rate suggests the involvement of motor proteins in the transport of NF-kappaB. Here we address the question how NF-kappaB arrives at the nuclear membrane before import in non-neuronal cells, i.e., by diffusion alone or with the help of active transport mechanisms. Using confocal microscopy imaging and analysis of nuclear protein extracts, we show that NF-kappaB movement through the cytoplasm to the nucleus is independent of the cytoskeleton, in the three cell lines investigated here. Additionally we demonstrate that NF-kappaB p65 is not associated with the dynein/dynactin molecular motor complex. We propose that cells utilize two distinct mechanisms of NF-kappaB transport: (1) signaling via diffusion over short distances in non-neuronal cells and (2) transport via motor proteins that move along the cytoskeleton in neuronal processes where the distances between sites of NF-kappaB activation and nucleus can be vast.
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.
Resumo:
East Asian summer monsoon (EASM) rainfall impacts the world's most populous regions. Accurate EASM rainfall prediction necessitates robust paleoclimate reconstructions from proxy data and quantitative linkage to modern climatic conditions. Many precisely dated oxygen isotope records from Chinese stalagmites have been interpreted as directly reflecting past EASM rainfall amount variability, but recent research suggests that such records instead integrate multiple hydroclimatic processes. Using a Lagrangian precipitation moisture source diagnostic, we demonstrate that EASM rainfall is primarily derived from the Indian Ocean. Conversely, Pacific Ocean moisture export peaks during winter, and the moisture uptake area does not differ significantly between summer and winter and is thus a minor contributor to monsoonal precipitation. Our results are substantiated by an accurate reproduction of summer and winter spatial rainfall distributions across China. We also correlate modern EASM rainfall oxygen isotope ratios with instrumental rainfall amount and our moisture source data. This analysis reveals that the strength of the source effect is geographically variable, and differences in atmospheric moisture transport may significantly impact the isotopic signature of EASM rainfall at the Hulu, Dongge, and Wanxiang Cave sites. These results improve our ability to isolate the rainfall amount signal in paleomonsoon reconstructions and indicate that precipitation across central and eastern China will directly respond to variability in Indian Ocean moisture supply.
Resumo:
Ozone dynamics depend on meteorological characteristics such as wind, radiation, sunshine, air temperature and precipitation. The aim of this study was to determine ozone trajectories along the northern coast of Portugal during the summer months of 2005, when there was a spate of forest fires in the region, evaluating their impact on respiratory and cardiovascular health in the greater metropolitan area of Porto. We investigated the following diseases, as coded in the ninth revision of the International Classification of Diseases: hypertensive disease (codes 401-405); ischemic heart disease (codes 410-414); other cardiac diseases, including heart failure (codes 426-428); chronic obstructive pulmonary disease and allied conditions, including bronchitis and asthma (codes 490-496); and pneumoconiosis and other lung diseases due to external agents (codes 500-507). We evaluated ozone data from air quality monitoring stations in the study area, together with data collected through HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model analysis of air mass circulation and synoptic-scale zonal wind from National Centers for Environmental Prediction data. High ozone levels in rural areas were attributed to the dispersion of pollutants induced by local circulation, as well as by mesoscale and synoptic scale processes. The fires of 2005 increased the levels of pollutants resulting from the direct emission of gases and particles into the atmosphere, especially when there were incoming frontal systems. For the meteorological case studies analyzed, peaks in ozone concentration were positively associated with higher rates of hospital admissions for cardiovascular diseases, although there were no significant associations between ozone peaks and admissions for respiratory diseases.
Resumo:
This study investigated the effects of transporting animals from the experimental room to the animal facility in between experimental sessions, a procedure routinely employed in experimental research, on long-term social recognition memory. By using the intruder-resident paradigm, independent groups of Wistar rats exposed to a 2-h encounter with an adult intruder were transported from the experimental room to the animal facility either 0.5 or 6h after the encounter. The following day, residents were exposed to a second encounter with either the same or a different (unfamiliar) intruder. Resident`s social and non-social behaviors were carefully scored and subjected to Principal Component Analysis, thus allowing to parcel out variance and relatedness among these behaviors. Resident rats transported 6h after the first encounter exhibited reduced amount of social investigation towards familiar intruders, but an increase of social investigation when exposed to a different intruder as compared to the first encounter. These effects revealed a consistent long-lasting (24h) social recognition memory in rats. In contrast, resident rats transported 0.5 h after the first encounter did not exhibit social recognition memory. These results indicate that this common, little-noted, laboratory procedure disturbs long-term social recognition memory. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.
Resumo:
P>Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P < 0.05 and P < 0.01, respectively). Twenty-four hours after exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P < 0.001) and costicosterone levels were lower (P < 0.01) than in EX-1. In the soleus, ammonia levels were lower in EX-1 than in SED rats (P < 0.001). After 24 h, glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P < 0.001). Soleus glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P < 0.001). The decrease in plasma glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle.