975 resultados para plasma production by laser
Resumo:
To investigate the role of some adverse environmental conditions in chlamy-dospore formation by the mycelial form of P. brasiliensis, we cultured four P. brasiliensis isolates (18, Bt4, 1183, Pb9) at 25°C within solid agar medium either rich or poor in nutrients. Isolates 18 and 1183 were also cultured under anaerobiosis in a nitrogen atmosphere. Isolate 18 produced great number of terminal and intercalary chlamydospore after 7-10 days of culture in a medium poor in nutrients (2% agar with 0.1% dextrose and polypepton). The three other isolates also produced chlamydospores under the same conditions, but in lower numbers. Chlamydospore production by isolate 18 was abolished when the fungus was cultured in two agar media rich in nutrients (brain heart infusion and potato dextrose agar). Anaerobic incubation of isolate 18 under an atmosphere of N2 showed small mycelial outgrowth with numerous chlamydospores. At the electron microscopical level, the chlamydospores showed one or various nuclei and numerous mitochondria, indicating great potential for further development. Accordingly, chlamydospores produced multiple budding after only 24 h incubation at 35°C. The results demonstrate that under adverse environmental conditions P. brasiliensis mycelial form produces chlamydospores within a short period of time.
Resumo:
Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.
Resumo:
In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells). The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain) had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain), that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.
Resumo:
A simple method of rubella antigen production by treatment with sodium desoxycholate for use in enzyme immunoassay (IMT-ELISA) is presented. When this assay was compared with a commercial test (Enzygnost-Rubella, Behring), in the study of 108 sera and 118 filter paper blood samples, 96.9% (219/226) overall agreement and correlation coefficient of 0.90 between absorbances were observed. Seven samples showed discordant results, negative by the commercial kit and positive by our test. Four of those 7 samples were available, being 3 positive by HI.
Resumo:
Listeria monocytogenes, etiological agent of severe human foodborne infection, uses sophisticated mechanisms of entry into host cytoplasm and manipulation of the cellular cytoskeleton, resulting in cell death. The host cells and bacteria interaction may result in cytokine production as Tumor Necrosis Factor (TNF) alpha. Hepatocytes have potential to produce pro-inflammatory cytokines as TNF-alpha when invaded by bacteria. In the present work we showed the behavior of hepatocytes invaded by L. monocytogenes by microscopic analysis, determination of TNF-alpha production by bioassay and analysis of the apoptosis through TUNEL technique. The presence of bacterium, in ratios that ranged from 5 to 50,000 bacteria per cell, induced the rupture of cellular monolayers. We observed the presence of internalized bacteria in the first hour of incubation by electronic microscopy. The levels of TNF-alpha increased from first hour of incubation to sixth hour, ranging from 0 to 3749 pg/mL. After seven and eight hours of incubation non-significant TNF-alpha levels decrease occurred, indicating possible saturation of cellular receptors. Thus, the quantity of TNF-alpha produced by hepatocytes was dependent of the incubation time, as well as of the proportion between bacteria and cells. The apoptosis rate increased in direct form with the incubation time (1 h to 8 + 24 h), ranging from 0 to 43%, as well as with the bacteria : cells ratio. These results show the ability of hepatocyte invasion by non-hemolytic L. monocytogenes, and the main consequences of this phenomenon were the release of TNF-alpha by hepatocytes and the induction of apoptosis. We speculate that hepatocytes use apoptosis induced by TNF-alpha for release bacteria to extracellular medium. This phenomenon may facilitate the bacteria destruction by the immune system.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)
Resumo:
The present work aims to update a series of information about the regional fishing production, by presenting and characterizing the contribution of the different sub-systems of the Amazon basin to the catch landed at the main fishing market of Manaus, Brazil, from 1994 to 1996. Collectors specifically hired for this function registered key information on the fisheries. Thirty nine types or groups of fish were found in the fishing production landed. Jaraqui (Semaprochilodus spp.), curimatã (Prochilodus nigricans), pacu (Myleinae), matrinchã (Brycon cephalus), sardine (Triportheus spp.), aracu (Anostomidae) and tambaqui (Colossoma macropomum) were the most important items during three consecutive years. In 1994 these items summed up 91.6% of the total production; in 1995 and 1996 these values were, respectively, 85.3% and 86.4% of the total production. Tambaqui landed decreased remarkably during the period 1976-1996. There was a strong seasonal component in the production of the main species; jaraqui and matrinchã were mostly landed between April and June, while curimatã, pacu, and sardine were mostly landed during the dry season. Other important items showed a strong inter-annual variation in their production. The fishing production landed came mostly from the sub-system of the Purus River (around 30% of the total production). The subsystem of the Medium-Solimões contributed with an average of 15% and the sub-systems of the Madeira, Lower-Solimões, Upper-Amazon and Juruá, together contributed with 11.5% of the total production landed. Finally, the remaining sub-systems contributed with only 7.6% of the production.
Resumo:
The filamentous fungus Ashbya gossypii has been safely and successfully used for more than two decades in the commercial production of riboflavin (vitamin B2). Its industrial relevance combined with its high genetic similarity with Saccharomyces cerevisiae together promoted the accumulation of fundamental knowledge that has been efficiently converted into a significant molecular and in silico toolbox for its genetic engineering. This synergy has enabled a directed and sustained exploitation of A. gossypii as an industrial riboflavin producer. Although there is still room for optimizing riboflavin production, the recent years have seen an abundant advance in the exploration of A. gossypii for other biotechnological applications, such as the production of recombinant proteins, single cell oil and flavour compounds. Here, we will address the biotechnological potential of A. gossypii beyond riboflavin production by presenting (a) a physiological and metabolic perspective over this fungus; (b) the molecular toolbox available for its manipulation; and (c) commercial and emerging biotechnological applications for this industrially important fungus, together with the approaches adopted for its engineering.
Resumo:
Ochratoxin A (OTA) is a very well known mycotoxin found in several food commodities for which maximum limits are being discussed in EC in other to produce appropriate regulations. OTA is one of several ochratoxins produced by Aspergillus and Penicillium species. All the compounds in this group have a molecular structure very similar to OTA and some were already isolated from natural substrates. Several of these compounds such as ochratoxin , methyl and ethyl ester of ochratoxin A, 4-R and S-hydroxyochratoxin A, 10-hydroxyochratoxin A and ochratoxin A open lactone are commercially unavailable. However, they can be easily synthesized through OTA modification. With the main objective of its application on further research works, OTA production, isolation and purification has been optimised from an A. alliaceus strain grown on wheat medium. Synthesis and purification of some OTA derivatives has been achieved and an HPLC method for their detection was optimised. Data about their production by several species of Aspergillus will be presented. The toxicological properties of ochratoxins are still not very clear and a future EC safety limit for OTA will depend on e.g., a better clarification of its carcinogenity. Could OTA derivatives play a role here?
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
no.22(1927)
Resumo:
Nitric oxide (NO) is crucial for the microvascular homeostasis, but its role played in the microvascular alterations during sepsis remains controversial. We investigated NO-dependent vasodilation in the skin microcirculation and plasma levels of asymmetric dimethylarginine (ADMA), a potent endogenous inhibitor of the NO synthases, in a human model of sepsis. In this double-blind, randomized, crossover study, microvascular NO-dependent (local thermal hyperemia) and NO-independent vasodilation (post-occlusive reactive hyperemia) assessed by laser Doppler imaging, plasma levels of ADMA, and l-arginine were measured in seven healthy obese volunteers, immediately before and 4 h after either a i.v. bolus injection of Escherichia coli endotoxin (LPS; 2 ng/kg) or normal saline (placebo) on two different visits at least 2 weeks apart. LPS caused the expected systemic effects, including increases in heart rate (+43%, P < 0.001), cardiac output (+16%, P < 0.01), and rectal temperature (+1.4°C, P < 0.001), without change in arterial blood pressure. LPS affected neither baseline skin blood flow nor post-occlusive reactive hyperemia but decreased the NO-dependent local thermal hyperemia response, l-arginine, and, to a lesser extent, ADMA plasma levels. The changes in NO-dependent vasodilation were not correlated with the corresponding changes in the plasma levels of ADMA, l-arginine, or the l-arginine/ADMA ratio. Our results show for the first time that experimental endotoxemia in humans causes a specific decrease in endothelial NO-dependent vasodilation in the microcirculation, which cannot be explained by a change in ADMA levels. Microvascular NO deficiency might be responsible for the heterogeneity of tissue perfusion observed in sepsis and could be a therapeutic target.