952 resultados para phytochrome mRNA


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) is important in tumour detection, monitoring disease progression and tumour recurrence. however, PSA is not a cancerspecific marker as levels can also be elevated in benign prostatic disease. A number of different mRNA transcripts of PSA have also been identified in prostatic tissue, but have not been fully characterized (PSA 424, PSA 525, Schulz transcript). Tissue specimens from transurethral resection of the prostate (TURP) or radical prostatectomy were obtained from 17 men with BPH and 15 men with prostate cancer. Total RNA was extracted, and reverse-transcriptionpolymerase chain reaction (RT-PCR) and Southern analysis carried out using transcript-specific primers and probes to determine which mRNA PSA transcripts were expressed. Real-time PCR was performed to determine transcript levels between the two groups using transcript-specific primers and SYBR green fluorescence. Values obtained were normalized to a standard housekeeping gene, B2-microglobulin. Transcripts amplified by RT-PCR and real-time PCR were confirmed by DNA sequencing. Our results show that the transcripts were present in some, but not all, BPH and cancer samples indicating that they are not specific to either BPH or cancer. Analysis of real-time PCR normalized values using a Student’s t -test, shows that there is a significant difference between the two groups for PSA 424, but not wild-type PSA, PSA 525 or the Schulz transcript. Although a larger cohort of samples is needed to further confirm these results, these findings suggest that mRNA levels of PSA 424 may have some utility as a diagnostic or prognostic marker in prostate cancer detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarrays are used to monitor the expression of thousands of gene transcripts. This technique requires high-quality RNA, which can be extracted from a variety sources, including autopsy brain tissue. Most nucleic acids and proteins are reasonably stable post mortem. However, their abundance and integrity can exhibit marked intraand inter-subject variability, so care must be taken when comparisons between case-groups are made. We will review issues associated with the sampling of RNA from autopsy brain tissue in relation to various ante- and post-mortem factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastro-oesophageal cancer is associated with a high incidence of cachexia. Proteolysis-inducing factor (PIF) has been identified as a possible cachectic factor and studies suggest that PIF is produced exclusively by tumour cells. We investigated PIF core peptide (PIF-CP) mRNA expression in tumour and benign tissue from patients with gastro-oesophageal cancer and in gastro-oesophageal biopsies for healthy volunteers. Tumour tissue and adjacent benign tissue were collected from patients with gastric and oesophageal cancer (n = 46) and from benign tissue only in healthy controls (n = 11). Expression of PIF-CP mRNA was quantified by real-time PCR. Clinical and pathological information along with nutritional status was collected prospectively. In the cancer patients, PIF-CP mRNA was detected in 27 (59%) tumour samples and 31 (67%) adjacent benign tissue samples. Four (36%) gastro-oesophageal biopsies from healthy controls also expressed PIF-CP mRNA. Expression was higher in tumour tissue (P = 0.031) and benign tissue (P = 0.022) from cancer patients compared with healthy controls. In the cancer patients, tumour and adjacent benign tissue PIF-CP mRNA concentrations were correlated with each other (P<0.0001, r = 0.73) but did not correlate with weight loss or prognosis. Although PIF-CP mRNA expression is upregulated in both tumour and adjacent normal tissue in gastro-oesophageal malignancy, expression does not relate to prognosis or cachexia. Post-translational modification of PIF may be a key step in determining the biological role of PIF in the patient with advanced cancer and cachexia. © 2006 Cancer Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is a malignant brain tumour for which there is currently no effective treatment regime. It is thought to develop due to the overexpression of a number of genes, including the epidermal growth factor receptor (EGFR), which is found in over 40% of GBM. Novel forms of treatment such as antisense therapy may allow for the specific inhibition of aberrant genes and thus they are optimistic therapies for future treatment of GBM. Oligodeoxynucleotides (ODNs) are small pieces of DNA that are often modified to increase their stability to nucleases and can be targeted to the aberrant gene in order to inhibit it and thus prevent its transcription into protein. By specifically binding to mRNA in an antisense manner, they can bring about its degradation by a variety of mechanisms including the activation of RNase H and thus have great potential as therapeutic agents. One of the main drawbacks to the utilisation of this therapy so far is the lack of techniques that can successfully predict accessible regions on the target mRNA that the ODNs can bind to. DNA chip technology has been utilised here to predict target sequences on the EGFR mRNA and these ODNs (AS 1 and AS2) have been tested in vitro for their stability, uptake into cells and their efficacy on cellular growth, EGFR protein and mRNA. Studies showed that phosphorothioate and 2'O-methyl ODNs were significantly more stable than phosphodiester ODNs both in serum and serum-free conditions and that the mechanism of uptake into A431 cells was temperature dependent and more efficient with the use of optimised lipofectin. Efficacy results show that AS 1 and AS2 phosphorothioate antisense ODNs were capable of inhibiting cell proliferation by 69% ±4% and 65% ±4.5% respectively at 500nM in conjunction with a non-toxic dose of lipofectinTM used to enhance cellular delivery. Furthermore, control ODN sequences, 2' O-methyl derivatives and a third ODN sequence, that was found not to be capable of binding efficiently to the EGFR mRNA by DNA chip technology, showed no significant effect on cell proliferation. AS 1 almost completely inhibited EGFR protein levels within 48 hours with two doses of 500nM AS 1 with no effect on other EGFR family member proteins or by control sequences. RNA analysis showed a decrease in mRNA levels of 32.4% ±0.8% but techniques require further optimisation to confirm this. As there are variations found between human glioblastoma in situ and those developed as xenografts, analysis of effect of AS 1 and AS2 was performed on primary tumour cell lines derived from glioma patients. ODN treatment showed a specific knockdown of cell growth compared to any of the controls used. Furthermore, combination therapies were tested on A431 cell growth to determine the advantage of combining different antisense approaches and that of conventional drugs. Results varied between the combination treatments but indicated that with optimisation of treatment regimes and delivery techniques that combination therapies utilising antisense therapies would be plausible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic ß-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic ß-cells. ß-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF)1ß (32-fold increase), HNF4a (16-fold increase) and nuclear factor ?B (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (-3.73-fold) and UCP2 (-1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P<0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of ß-cell function-associated genes in mouse ß-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.