835 resultados para physical models
Resumo:
We study the comparative importance of thermal to nonthermal fluctuations for membrane-based models in the linear regime. Our results, both in 1+1 and 2+1 dimensions, suggest that nonthermal fluctuations dominate thermal ones only when the relaxation time τ is large. For moderate to small values of τ, the dynamics is defined by a competition between these two forces. The results are expected to act as a quantitative benchmark for biological modeling in systems involving cytoskeletal and other nonthermal fluctuations. © 2011 American Physical Society.
Resumo:
PURPOSE. To examine the relation between ocular surface temperature (OST) assessed by dynamic thermal imaging and physical parameters of the anterior eye in normal subjects. METHODS. Dynamic ocular thermography (ThermoTracer 7102MX) was used to record body temperature and continuous ocular surface temperature for 8 s after a blink in the right eyes of 25 subjects. Corneal thickness, corneal curvature, and anterior chamber depth (ACD) were assessed using Orbscan II; noninvasive tear break-up time (NIBUT) was assessed using the tearscope; slit lamp photography was used to record tear meniscus height (TMH) and objective bulbar redness. RESULTS. Initial OST after a blink was significantly correlated only with body temperature (r = 0.80, p < 0.0005), NIBUT (r = -0.68, p < 0.005) and corneal curvature (r = -0.40, p = 0.05). A regression model containing all the variables accounted for 70% (p = 0.002) of the variance in OST, of which NIBUT (29%, p = 0.004), and body temperature (18%, p = 0.005) contributed significantly. CONCLUSIONS. The results support previous theoretical models that OST radiation is principally related to the tear film; and demonstrate that it is less related to other characteristics such as corneal thickness, corneal curvature, and anterior chamber depth. © 2007 American Academy of Optometry.
Resumo:
As a discipline, supply chain management (SCM) has traditionally been primarily concerned with the procurement, processing, movement and sale of physical goods. However an important class of products has emerged - digital products - which cannot be described as physical as they do not obey commonly understood physical laws. They do not possess mass or volume, and they require no energy in their manufacture or distribution. With the Internet, they can be distributed at speeds unimaginable in the physical world, and every copy produced is a 100% perfect duplicate of the original version. Furthermore, the ease with which digital products can be replicated has few analogues in the physical world. This paper assesses the effect of non-physicality on one such product – software – in relation to the practice of SCM. It explores the challenges that arise when managing the software supply chain and how practitioners are addressing these challenges. Using a two-pronged exploratory approach that examines the literature around software management as well as direct interviews with software distribution practitioners, a number of key challenges associated with software supply chains are uncovered, along with responses to these challenges. This paper proposes a new model for software supply chains that takes into account the non-physicality of the product being delivered. Central to this model is the replacement of physical flows with flows of intellectual property, the growing importance of innovation over duplication and the increased centrality of the customer in the entire process. Hybrid physical / digital supply chains are discussed and a framework for practitioners concerned with software supply chains is presented.
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
The search-experience-credence framework from economics of information, the human-environment relations models from environmental psychology, and the consumer evaluation process from services marketing provide a conceptual basis for testing the model of "Pre-purchase Information Utilization in Service Physical Environments." The model addresses the effects of informational signs, as a dimension of the service physical environment, on consumers' perceptions (perceived veracity and perceived performance risk), emotions (pleasure) and behavior (willingness to buy). The informational signs provide attribute quality information (search and experience) through non-personal sources of information (simulated word-of-mouth and non-personal advocate sources).^ This dissertation examines: (1) the hypothesized relationships addressed in the model of "Pre-purchase Information Utilization in Service Physical Environments" among informational signs, perceived veracity, perceived performance risk, pleasure, and willingness to buy, and (2) the effects of attribute quality information and sources of information on consumers' perceived veracity and perceived performance risk.^ This research is the first in-depth study about the role and effects of information in service physical environments. Using a 2 x 2 between subjects experimental research procedure, undergraduate students were exposed to the informational signs in a simulated service physical environment. The service physical environments were simulated through color photographic slides.^ The results of the study suggest that: (1) the relationship between informational signs and willingness to buy is mediated by perceived veracity, perceived performance risk and pleasure, (2) experience attribute information shows higher perceived veracity and lower perceived performance risk when compared to search attribute information, and (3) information provided through simulated word-of-mouth shows higher perceived veracity and lower perceived performance risk when compared to information provided through non-personal advocate sources. ^
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.
Resumo:
A high frequency physical phase variable electric machine model was developed using FE analysis. The model was implemented in a machine drive environment with hardware-in-the-loop. The novelty of the proposed model is that it is derived based on the actual geometrical and other physical information of the motor, considering each individual turn in the winding. This is the first attempt to develop such a model to obtain high frequency machine parameters without resorting to expensive experimental procedures currently in use. The model was used in a dynamic simulation environment to predict inverter-motor interaction. This includes motor terminal overvoltage, current spikes, as well as switching effects. In addition, a complete drive model was developed for electromagnetic interference (EMI) analysis and evaluation. This consists of the lumped parameter models of different system components, such as cable, inverter, and motor. The lumped parameter models enable faster simulations. The results obtained were verified by experimental measurements and excellent agreements were obtained. A change in the winding arrangement and its influence on the motor high frequency behavior has also been investigated. This was shown to have a little effect on the parameter values and in the motor high frequency behavior for equal number of turns. An accurate prediction of overvoltage and EMI in the design stages of the drive system would reduce the time required for the design modifications as well as for the evaluation of EMC compliance issues. The model can be utilized in the design optimization and insulation selection for motors. Use of this procedure could prove economical, as it would help designers develop and test new motor designs for the evaluation of operational impacts in various motor drive applications.
Resumo:
The purpose of this research was to explore the influence of physical activity on depressive symptomatology and adolescent alcohol use during an underexplored transition from middle school to high school. The study initiative is supported by the fact that research has shown a unique and simultaneous decrease in physical activity (CDC, 2010), increase in depressive symptomatology (SAMHSA, 2010) and increase in alcohol use (USDHHS, 2011) during middle adolescence. A risk and resilience framework was used in efforts to conceptualize how these variables may be inter-related. Data from waves I and II of the National Longitudinal Study of Adolescent Health (Add Health, Bearman et al., 1997; Udry, 1997) was used (N = 2,054; aged 13–15 years). The sample was ethnically and racially diverse (58.2% White, 24% African American, 11.7% Hispanic, and 6.1% other). Structural equation models were developed to test the potential influence physical activity has on adolescent alcohol use (e.g., frequency of alcohol use and binge alcohol use) and whether any of the relationship was mediated by depressive symptomatology or varied as a function of gender. Results demonstrated that there was a significant influence of structured physical activity (e.g., sports) on adolescent alcohol use. However, contrary to the proposed hypothesis, engaging in structured physical activity appeared to contribute to greater binge drinking among adolescents. Instead of demonstrating a protective feature, the findings suggest that engaging in structured physical activity places adolescents at risk for binge drinking. Furthermore, no significant relationships, positive or negative, were found for the influence of physical activity (structured and unstructured) on frequency of alcohol use. The findings regarding mediation revealed binge drinking as a mediator between physical activity (structured) and depressive symptomatology. These findings provide support for research, practice, and policy initiatives focused on developing a more comprehensive understanding of alcohol use drinking behaviors, physical activity involvement, and depressive symptomatology among adolescents, which this study demonstrates are all associated with one another. Results represent an initial step toward evaluating these relationships at a much younger age.
Resumo:
Florida is the second leading horticulture state in the United States with a total annual industry sale of over $12 Billion. Due to its competitive nature, agricultural plant production represents an extremely intensive practice with large amounts of water and fertilizer usage. Agrochemical and water management are vital for efficient functioning of any agricultural enterprise, and the subsequent nutrient loading from such agricultural practices has been a concern for environmentalists. A thorough understanding of the agrochemical and the soil amendments used in these agricultural systems is of special interest as contamination of soils can cause surface and groundwater pollution leading to ecosystem toxicity. The presence of fragile ecosystems such as the Everglades, Biscayne Bay and Big Cypress near enterprises that use such agricultural systems makes the whole issue even more imminent. Although significant research has been conducted with soils and soil mix, there is no acceptable method for determining the hydraulic properties of mixtures that have been subjected to organic and inorganic soil amendments. Hydro-physical characterization of such mixtures can facilitate the understanding of water retention and permeation characteristics of the commonly used mix which can further allow modeling of soil water interactions. The objective of this study was to characterize some of the locally and commercially available plant growth mixtures for their hydro-physical properties and develop mathematical models to correlate these acquired basic properties to the hydraulic conductivity of the mixture. The objective was also to model the response patterns of soil amendments present in those mixtures to different water and fertilizer use scenarios using the characterized hydro-physical properties with the help of Everglades-Agro-Hydrology Model. The presence of organic amendments helps the mixtures retain more water while the inorganic amendments tend to adsorb more nutrients due to their high surface area. The results of these types of characterization can provide a scientific basis for understanding the non-point source water pollution from horticulture production systems and assist in the development of the best management practices for the operation of environmentally sustainable agricultural enterprise
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].
Resumo:
Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence
Resumo:
Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.