942 resultados para phosphorylated


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins play an important role in the biological mechanisms controlling hard tissue development, but the details of molecular recognition at inorganic crystal interfaces remain poorly characterized. We have applied a recently developed homonuclear dipolar recoupling solid-state NMR technique, dipolar recoupling with a windowless sequence (DRAWS), to directly probe the conformation of an acidic peptide adsorbed to hydroxyapatite (HAP) crystals. The phosphorylated hexapeptide, DpSpSEEK (N6, where pS denotes phosphorylated serine), was derived from the N terminus of the salivary protein statherin. Constant-composition kinetic characterization demonstrated that, like the native statherin, this peptide inhibits the growth of HAP seed crystals when preadsorbed to the crystal surface. The DRAWS technique was used to measure the internuclear distance between two 13C labels at the carbonyl positions of the adjacent phosphoserine residues. Dipolar dephasing measured at short mixing times yielded a mean separation distance of 3.2 ± 0.1 Å. Data obtained by using longer mixing times suggest a broad distribution of conformations about this average distance. Using a more complex model with discrete α-helical and extended conformations did not yield a better fit to the data and was not consistent with chemical shift analysis. These results suggest that the peptide is predominantly in an extended conformation rather than an α-helical state on the HAP surface. Solid-state NMR approaches can thus be used to determine directly the conformation of biologically relevant peptides on HAP surfaces. A better understanding of peptide and protein conformation on biomineral surfaces may provide design principles useful for the modification of orthopedic and dental implants with coatings and biological growth factors that are designed to enhance biocompatibility with surrounding tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pointed (PNT) domain and an adjacent mitogen-activated protein (MAP) kinase phosphorylation site are defined by sequence conservation among a subset of ets transcription factors and are implicated in two regulatory strategies, protein interactions and posttranslational modifications, respectively. By using NMR, we have determined the structure of a 110-residue fragment of murine Ets-1 that includes the PNT domain and MAP kinase site. The Ets-1 PNT domain forms a monomeric five-helix bundle. The architecture is distinct from that of any known DNA- or protein-binding module, including the helix-loop-helix fold proposed for the PNT domain of the ets protein TEL. The MAP kinase site is in a highly flexible region of both the unphosphorylated and phosphorylated forms of the Ets-1 fragment. Phosphorylation alters neither the structure nor monomeric state of the PNT domain. These results suggest that the Ets-1 PNT domain functions in heterotypic protein interactions and support the possibility that target recognition is coupled to structuring of the MAP kinase site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using antisense RNA, Lck-deficient transfectants of a T helper 2 (Th2) clone have been derived and shown to have a qualitative defect in the T cell receptor signaling pathway. A striking feature observed only in Lck-deficient T cells was the presence of a constitutively tyrosine-phosphorylated 32-kDa protein. In the present study, we provide evidence that this aberrantly hyperphosphorylated protein is p34cdc2 (cdc2) a key regulator of cell-cycle progression. Lck-deficient transfectants expressed high levels of cdc2 protein and its regulatory units, cyclins A and B. The majority of cdc2, however, was tyrosine-phosphorylated and therefore enzymatically inactive. The transfectants were significantly larger than the parental cells and contained 4N DNA. These results establish that a deficiency in Lck leads to a cell-cycle arrest in G2. Moreover, transfected cells were hypersusceptible to apoptosis when activated through the T cell receptor. Importantly, however, this hypersusceptibility was largely reversed in the presence of T cell growth factors. These findings provide evidence that, in mature T lymphocytes, cell-cycle progression through the G2–M check point requires expression of the Src-family protein tyrosine kinase, Lck. This requirement is Lck-specific; it is observed under conditions in which the closely related Fyn kinase is expressed normally, evincing against a redundancy of function between these two kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of β-xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of β-xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nm23 genes, which encode nucleoside diphosphate kinases, have been implicated in suppressing tumor metastasis. The motility of human breast carcinoma cells can be suppressed by transfection with wild-type nm23-H1, but not by transfections with two nm23-H1 mutants, nm23-H1S12OG and nm23-H1P96S. Here we report that nm23-H1 can transfer a phosphate from its catalytic histidine to aspartate or glutamate residues on 43-kDa membrane proteins. One of the 43-kDa membrane proteins was not phosphorylated by either nm23-H1P96S or nm23-H1S120G, and another was phosphorylated much more slowly by nm23-H1P96S and by nm23-H1S120G than by wild-type nm23-H1. Nm23-H1 also can transfer phosphate from its catalytic histidine to histidines on ATP-citrate lyase and succinic thiokinase. The rates of phosphorylation of ATP-citrate lyase by nm23-H1S120G and nm23-H1P96S were similar to that by wild-type nm23-H1. The rate of phosphorylation of succinic thiokinase by nm23-H1S120 was similar to that by wild-type nm23-H1, and the rate of phosphorylation of succinic thiokinase by nm23-H1P96S was about half that by wild-type nm23-H1. Thus, the transfer of phosphate from nm23-H1 to aspartates or glutamates on other proteins appears to correlate better with the suppression of motility than does the transfer to histidines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CTLA-4 plays a critical role in regulating the immune response. It is mainly located in cytoplasmic vesicles and is expressed only transiently on the surface after T cell activation. In this study, we demonstrate that CTLA-4 is associated with AP50, the medium chain of the clathrin-associated coated pit adaptor protein complex AP2. In a yeast two-hybrid screen, three individual cDNA clones that encode mouse AP50 were isolated, all of which can interact specifically with the cytoplasmic domain of mouse CTLA-4, but not with the cytoplasmic domain of mouse CD28. We have shown that CTLA-4 can bind specifically to AP50 when CTLA-4 and AP50 are cotransfected into human 293T cells. A Y201 to F201 mutation in the YVKM intracellular localization motif of the CTLA-4 cytoplasmic domain significantly diminished its binding to AP50. We also found that AP50 bound to a CTLA-4 peptide containing unphosphorylated Y201 but not to a peptide containing phosphorylated Y201. Conversely, the p85 subunit of phosphatidylinositol 3-kinase and, to a lesser extent, protein tyrosine phosphatase SYP (SHP-2) and SHP (SHP-1) bind only to the CTLA-4 peptide containing phosphorylated Y201. Therefore, the phosphorylation status of Y201 in the CTLA-4 cytoplasmic domain determines the binding specificity of CTLA-4. These results suggest that AP50 and the coated pit adaptor complex AP2 may play an important role in regulating the intracellular trafficking and function of CTLA-4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An early stage in thymocyte development, after rearrangement of the β chain genes of the T cell receptor (TCR), involves expression of the pre-TCR complex and accompanying differentiation of CD4−CD8− double negative (DN) cells to CD4+CD8+ double positive (DP) cells. The ZAP-70 and Syk tyrosine kinases each contain two N-terminal SH2 domains that bind phosphorylated motifs in antigen receptor subunits and are implicated in pre-T receptor signaling. However, mice deficient in either ZAP-70 or Syk have no defect in the formation of DP thymocytes. Here we show that, in mice lacking both Syk and ZAP-70, DN thymocytes undergo β chain gene rearrangement but fail to initiate clonal expansion and are incapable of differentiating into DP cells after expression of the pre-TCR. These data suggest that the ZAP-70 and Syk tyrosine kinases have crucial but overlapping functions in signaling from the pre-TCR and hence in early thymocyte development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topology of signal transduction is particularly important for neurons. Neurotrophic factors such as nerve growth factor (NGF) interact with receptors at distal axons and a signal is transduced by retrograde transport to the cell body to ensure survival of the neuron. We have discovered an organelle that may account for the retrograde transport of the neurotrophin signal. This organelle is derived from endocytosis of the receptor tyrosine kinase for NGF, TrkA. In vitro reactions containing semi-intact PC12 cells and ATP were used to enhance recovery of a novel organelle: small vesicles containing internalized NGF bound to activated TrkA. These vesicles were distinct from clathrin coated vesicles, uncoated primary endocytic vesicles, and synaptic vesicles, and resembled transport vesicles in their sedimentation velocity. They contained 10% of the total bound NGF and almost one-third of the total tyrosine phosphorylated TrkA. These small vesicles are compelling candidates for the organelles through which the neurotrophin signal is conveyed down the axon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have found that ectopic expression of cyclin A increases hormone-dependent and hormone-independent transcriptional activation by the estrogen receptor in vivo in a number of cell lines, including HeLa cells, U-2 OS osteosarcoma cells and Hs 578Bst breast epithelial cells. This effect can be further enhanced in HeLa cells by the concurrent expression of the cyclin-dependent kinase activator, cyclin H, and cdk7, and abolished by expression of the cdk inhibitor, p27KIP1, or by the expression of a dominant negative catalytically inactive cdk2 mutant. ER is phosphorylated between amino acids 82 and 121 in vitro by the cyclin A/cdk2 complex and incorporation of phosphate into ER is stimulated by ectopic expression of cyclin A in vivo. Together, these results strongly suggest a direct role for the cyclin A/cdk2 complex in phosphorylating ER and regulating its transcriptional activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and ɛ of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, TAP42 was isolated as a high copy suppressor of sit4−, a yeast phosphatase related to protein phosphatase 2A (PP2A). TAP42 is related to the murine α4 protein, which was discovered independently by its association with Ig-α in the B cell receptor complex. Herein we show that a glutathione S-transferase (GST)–α4 fusion protein bound the catalytic subunit (C) of human PP2A from monomeric or multimeric preparations of PP2A in a “pull-down” assay. In an overlay assay, the GST–α4 protein bound to the phosphorylated and unphosphorylated forms of C that were separated in two-dimensional gels and immobilized on filters. The results show direct and exclusive binding of α4 to C. This is unusual because all known regulatory B subunits, or tumor virus antigens, bind stably only to the AC dimer of PP2A. The α4–C form of PP2A had an increased activity ratio compared with the AC form of PP2A when myelin basic protein phosphorylated by mitogen-activated protein kinase and phosphorylase a were used as substrates. Recombinant α4 cleaved from GST was phosphorylated by p56lck tyrosine kinase and protein kinase C. A FLAG-tagged α4 expressed in COS7 cells was recovered as a protein containing phosphoserine and coimmunoprecipitated with the C but not the A subunit of PP2A. Treatment of cells with rapamycin prevented the association of PP2A with FLAG-α4. The results reveal a novel heterodimer α4–C form of PP2A that may be involved in rapamycin-sensitive signaling pathways in mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.