637 resultados para phospholipase
Resumo:
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.
Resumo:
The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.
Resumo:
Astrocytes in the rat thalamus display spontaneous [Ca2+]i oscillations that are due to intracellular release, but are not dependent on neuronal activity. In this study we have investigated the mechanisms involved in these spontaneous [Ca2+]i oscillations using slices loaded with Fluo-4 AM (5 μM) and confocal microscopy. Bafilomycin A1 incubation had no effect on the number of spontaneous [Ca2+]i oscillations indicating that they were not dependent on vesicular neurotransmitter release. Oscillations were also unaffected by ryanodine. Phospholipase C (PLC) inhibition decreased the number of astrocytes responding to metabotropic glutamate receptor (mGluR) activation but did not reduce the number of spontaneously active astrocytes, indicating that [Ca2+]i increases are not due to membrane-coupled PLC activation. Spontaneous [Ca2+]i increases were abolished by an IP3 receptor antagonist, whilst the protein kinase C (PKC) inhibitor chelerythrine chloride prolonged their duration, indicating a role for PKC and inositol 1,4,5,-triphosphate receptor activation. BayK8644 increased the number of astrocytes exhibiting [Ca2+]i oscillations, and prolonged the responses to mGluR activation, indicating a possible effect on store-operated Ca2+ entry. Increasing [Ca2+]o increased the number of spontaneously active astrocytes and the number of transients exhibited by each astrocyte. Inhibition of the endoplasmic reticulum Ca2+ ATPase by cyclopiazonic acid also induced [Ca2+]i transients in astrocytes indicating a role for cytoplasmic Ca2+ in the induction of spontaneous oscillations. Incubation with 20 μM Fluo-4 reduced the number of astrocytes exhibiting spontaneous increases. This study indicates that Ca2+ has a role in triggering Ca2+ release from an inositol 1,4,5,-triphosphate sensitive store in astrocytes during the generation of spontaneous [Ca2+]i oscillations
Resumo:
Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.
Resumo:
Antiophidic activity from decoct of Jatropha gossypiifolia L. leaves against Bothrops jararaca venom. Snakebites are a serious worldwide public health problem. In Latin America, about 90 % of accidents are attributed to snakes from Bothrops genus. Currently, the main available treatment is the antivenom serum therapy, which has some disadvantages such as inability to neutralize local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies to treat snakebites is relevant. Jatropha gossypiifolia L., a medicinal plant popularly known in Brazil as “pinhão-roxo”, is very used in folk medicine as antiophidic. So, the aim of this study is to evaluate the antiophidic properties of this species against enzymatic and biological activities from Bothrops jararaca snake venom. The aqueous leaf extract of J. gossypiifolia was prepared by decoction. The inhibition studies were performed in vitro, by pre-incubation of a fixed amount of venom with different amounts of extract from J. gossypiifolia for 60 min at 37 °C, and in vivo, through oral or intraperitoneal treatment of animals, in different doses, 60 min before venom injection. The proteolytic activity upon azocasein was efficiently inhibited, indicating inhibitory action upon metalloproteinases (SVMPs) and/or serine proteases (SVSPs). The extract inhibited the fibrinogenolytic activity, which was also confirmed by zymography, where it was possible to observe that the extract preferentially inhibits fibrinogenolytic enzymes of 26 and 28 kDa. The coagulant activity upon fibrinogen and plasma were significantly inhibited, suggesting an inhibitory action upon thrombin-like enzymes (SVTLEs), as well as upon clotting factor activators toxins. The extract prolonged the activated partial thromboplastin time (aPTT), suggesting an inhibitory action toward not only to SVTLEs, but also against endogenous thrombin. The defibrinogenating activity in vivo was efficiently inhibited by the extract on oral route, confirming the previous results. The local hemorrhagic activity was also significantly inhibited by oral route, indicating an inhibitory action upon SVMPs. The phospholipase activity in vitro was not inhibited. Nevertheless, the edematogenic and myotoxic activities were efficiently inhibited, by oral and intraperitoneal route, which may indicate an inhibitory effect of the extract upon Lys49 phospholipase (PLA2) and/ or SVMPs, or also an anti-inflammatory action against endogenous chemical mediators. Regarding the possible action mechanism, was observed that the extract did not presented proteolytic activity, however, presented protein precipitating action. In addition, the extract showed significant antioxidant activity in different models, which could justify, at least partially, the antiophidic activity presented. The metal chelating action presented by extract could be correlated with SVMPs inhibition, once these enzymes are metal-dependent. The phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins, from which the flavonoids could be pointed as major compounds, based on chromatographic profile obtained by thin layer chromatography (TLC). In conclusion, the results demonstrate that the J. gossypiifolia leaves decoct present potential antiophidic activity, including action upon snakebite local effects, suggesting that this species may be used as a new source of bioactive molecules against bothropic venom.
Resumo:
CHAPTER II: Snake venoms are a complex mixture of organic and inorganic compounds, proteins and peptides such as aminotransferases, acetylcholinesterase, hyaluronidases, L-amino acid oxidase, phospholipase A2, metalloproteases, serine proteases, lectins, disintegrins, and others. Phospholipase A2 directly or indirectly influence the pathophysiological effect on envenomation, as well as their participation in the digestion of the prey. They have several other activities such as hemolytic indirect action, cardiotoxicity, aggregating of platelets, anticoagulant, edema, myotoxic and inflammatory activities. In this work, we describe the functional characterization of BaltMTx, a PLA2 from Bothrops alternatus that inhibits platelet aggregation and present bactericidal effect. The purification of BaltMTx was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, followed by hydrophobic chromatography on Phenyl–Sepharose and affinity chromatography on HiTrap™ Heparin HP). The protein was purified to homogeneity as judged by its migration profile in SDS–PAGE stained with coomassie blue, and showed a molecular mass of about 15 kDa under reducing conditions and approximately 25 kDa in non-reducing conditions. BaltMTx showed a rather specific inhibitory effect on platelet aggregation induced by epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by collagen or adenosine diphosphate. BaltMTx also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. High concentrations of BatlMTx stimulated the proliferation of Leishmania (Leishmania) infantum and Leishmania (Viania) braziliensis. BaltMTx induced production of inflammatory mediators such as IL-10, IL-12, TNF-α and NO. BaltMTx could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders as well as bactericidal agent.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Excitation-contraction coupling is an essential part of skeletal muscle contraction. It encompasses the sensing of depolarisation of the plasma membrane coupled with the release of Ca2+ from intracellular stores. The channel responsible for this release is called the Ryanodine receptor (RyR), and forms a hub of interacting proteins which work in concert to regulate the release of Ca2+ through this channel. The aim of this work was to characterise possible novel interactions with a proline-rich region of the RyR1, to characterise a monoclonal antibody (mAb VF1c) raised against a junctional sarcoplasmic reticulum protein postulated to interact with RyR1, and to characterise the protein recognised by this antibody in models of skeletal muscle disease such as Duchenne Muscular dystrophy (DMD) and sarcopenia. These experiments were performed using cell culture, protein purification via immunoprecipitation, affinity purification, low pressure chromatography and western blotting techniques. It was found that the RyR1 complex isolated from rat skeletal muscle co-purifies with the Growth factor receptor bound protein 2 (GRB2), very possibly via an interaction between the proline rich region of RyR1 and one of the SH3 domains located on the GRB2 protein. It was also found that Pleiotrophin and Phospholipase Cγ1, suggested interactors of the proline rich region of RyR1, did not co-purify with the RyR1 complex. Characterisation of mAb VF1c determined that this monoclonal antibody interacts with junctophilin 1, and binds to this protein between the region of 369-460, as determined by western blotting of JPH1 fragments expressed in yeast. It was also found that JPH1 and JPH2 are differentially regulated in different muscles of rabbit, where the highest amount of both proteins was found in the extensor digitorum longus (EDL) muscle. JPH1 and 2 levels were also examined in three rodent models of disease: the mdx mouse (a model of DMD), chronic intermittent hypoxia (CIH)-treated rat, and aged and adult mice, a model of sarcopenia. In the EDL and soleus muscle of CIH treated rats, no difference in either JPH1 or JPH2 abundance was detected in either muscle. An examination of JPH1 and 2 expression in mdx and wild type controls diaphragm, vastus lateralis, soleus and gastrocnemius muscle found no major differences in JPH1 abundance, while JPH2 was decreased in mdx gastrocnemius compared to wild type. In a mouse model of sarcopenia, JPH1 abundance was found to be increased in aged soleus but not in aged quadriceps, while in exercised quadriceps, JPH2 abundance was decreased compared to unexercised controls. Taken together, these results have implications for the regulation of RyR1 and JPH1 and 2 in skeletal muscle in both physiological and pathological states, and provide a newly characterised antibody to expand the field of JPH1 research.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Fliegende Insekten orientieren sich in ihrer Umwelt mit Hilfe ihres hoch entwickelten olfaktorischen Systems. Es ermöglicht ihnen das Auffinden geeigneter Futter- und Eiablageplätze und ist unverzichtbar bei der innerartlichen Kommunikation. Der Geruchssinn muss dabei gleichzeitig sehr schnell und sensitiv sein um selbst geringste Mengen, z.B. des arteigenen Sexualpheromons, wahrnehmen zu können. Spezifische olfaktorische Rezeptoren (ORs) zur Detektion dieser Duftstoffe werden zusammen mit einem hoch konservierten Co-Rezeptor (Orco) in olfaktorischen Rezeptorneuronen (ORNs) auf den Insektenantennen exprimiert. Sie gehören zu den 7 Transmembran Rezeptoren, zeigen jedoch eine invertierte Membrantopologie im Vergleich zu den ORs der Vertebraten. Darüber hinaus bildet der OR/Orco-Komplex einen spontanaktiven Kationenkanal, die Bindung an ein G Protein ist allerdings umstritten. Daher ist noch ungeklärt, ob die Duftstoffbindung zu einer ionotropen Aktivierung des OR/Orco Kanals führt oder ob metabotrope Mechanismen die Bildung von zyklischem Adenosinmonophosphat (cAMP) oder Inositol 1,4,5-trisphosphat (IP3) bewirken. Mit Hilfe von extrazellulären Ableitungen einzelner Trichoidsensillen (tip recordings) auf den Antennen männlicher Manduca sexta wurde die Rolle von Orco sowie die Beteiligung einer Phospholipase Cβ (PLCβ)-abhängigen Transduktionskaskade untersucht. Es konnte gezeigt werden, dass die durch VUAA1 induzierte Spontanaktivität der ORNs durch OLC15 inhibiert und Orco somit kompetitiv gehemmt wurde. Eine Inhibition von Orco sollte die Antwort auf kurze Pheromonpulse sofort reduzieren, sollte die Transduktion über die Aktivierung des OR/Orco Kanals erfolgen. Die Ergebnisse dieser Arbeit zeigten jedoch keine Beeinflussung der primären Pheromonantwort, vielmehr wurde die späte, langanhaltende Antwort reduziert. Die ebenfalls als Orco-Antagonisten charakterisierten Amiloride MIA und HMA beeinflussen offensichtlich weitere Ziele, da eine substanz- und zeitgeberzeitabhängige Reduzierung der primären Antwort auftrat. Zusätzlich wurde die primäre Pheromonantwort durch die Inhibierung der PLCβ und der Proteinkinase C (PKC), sowie durch die Verwendung zweier Diacylglycerol (DAG)- Derivate signifikant beeinflusst. Hierbei zeigte die Inhibierung von PLCβ und PKC zeitgeberzeitabhängige Unterschiede in der Stärke der Antwortreduktion. Auch die Applikation des DAG-Derivates DOG reduzierte die Pheromonantwort, während die Zugabe von OAG die ORN Aktivität steigern oder reduzieren konnte, abhängig von der verwendeten Derivatkonzentration und der Pheromonkonzentration. Die Ergebnisse dieser Arbeit deuten somit auf einen metabotropen, sehr wahrscheinlich PLCβ-abhängigen Mechanismus für die Pheromontransduktion bei Manduca sexta.
Resumo:
International audience
Resumo:
Three types of phospholipases, phospholipase D, secreted phospholipase A2, and patatin-related phospholipase A (pPLA) have functions in auxin signal transduction. Potential linkage to auxin receptors ABP1 or TIR1, their rapid activation or post-translational activation mechanisms, and downstream functions regulated by these phospholipases is reviewed and discussed. Only for pPLA all aspects are known at least to some detail. Evidence is gathered that all these signal reactions are located in the cytosol and seem to merge on regulation of PIN-catalyzed auxin efflux transport proteins. As a consequence, auxin concentration in the nucleus is also affected and this regulates the E3 activity of this auxin receptor. We showed that ABP1, PIN2, and pPLA, all outside the nucleus, have an impact on regulation of auxin-induced genes within 30 min. We propose that regulation of PIN protein activities and of auxin efflux transport are the means to coordinate ABP1 and TIR1 activity and that no physical contact between components of the ABP1-triggered cytosolic pathways and TIR1-triggered nuclear pathways of signaling is necessary to perform this.
Resumo:
New devices were designed to generate a localized mechanical vibration of flexible gels where human umbilical vein endothelial cells (HUVECs) were cultured. The stimulation setups were able to apply relatively large strains (30%~50%) at high temporal frequencies (140~207 Hz) in a localized subcellular region. One of the advantages of this technique was to be less invasive to the innate cellular functions because there was no direct contact between the stimulating probe and the cell body. A mechanical vibration induced by the device in the substrate gel where cells were seeded could mainly cause global calcium responses of the cells. This global response was initiated by the influx of calcium across the stretch-activated channels in the plasma membrane. The subsequent production of inositol triphosphate (IP3) via phospholipase C (PLC) activation triggered the calcium release from the endoplasmic reticulum (ER) to cause a global intracellular calcium fluctuation over the whole cell body. This global calcium response was also shown to depend on actomyosin contractility and F-actin integrity, probably controlling the membrane stretch-activated channels. The localized nature of the stimulation is one of the most important features of these new designs as it allowed the observation of the calcium signaling propagation by ER calcium release. The next step was to focus on the calcium influx, more specifically the TRPM7 channels. As TRPM7 expression may modulate cell adhesion, an adhesion assay was developed and tested on HUVECs seeded on gel substrates with different treatments: normal treatment on gels showed highest attachment rate, followed by the partially treated gels (only 5% of usual fibronectin amount) and untreated gels, with the lowest attachment rate. The trend of the attachment rates correlated to the magnitude of the calcium signaling observed after mechanical stimulation. TRPM7 expression inhibition by siRNA caused an increased attachment rate when compared to both control and non-targeting siRNA-treated cells, but resulted in an actual weaker response in terms of calcium signaling. It suggests that TRPM7 channels are indeed important for the calcium signaling in response to mechanical stimulation. A complementary study was also conducted consisting in the mechanical stimulation of a dissected Drosophila embryo. Although ionomycin treatment showed calcium influx in the tissue, the mechanical stimulation delivered as a vertical vibration did not elicited calcium signaling in response. One possible reason is the dissection procedure causing desensitization of the tissue due to the scrapings and manipulations to open the embryo.