943 resultados para phase transitions-crystallographic
Resumo:
Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.
Resumo:
An electron energy loss spectroscopic study of the formic acid dimer has shown bands centred around 7.2, 8.5, 9.8, and 11.1 eV, of which the first and the third bands are assigned to n- rc* transitions and the other two to n-n* transitions; similar transitions are found in the acetic acid dimer.
Resumo:
The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.
Resumo:
Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.
Resumo:
The formation of a complete solid solution between acetylacetonate (acac) complexes of chromium and gallium, (Cr1-x,Ga-x)(acac)(3) for 0.1
Resumo:
The photoinduced electron transfer processes in a nanoheterostructured semiconductor assembly are complex and depend on various parameters Of the constituents of the assembly. We present here the ultrafast electron transfer characteristics of an assembly comprised of a Wide band semiconductor, titanium dioxide (TiO2), attached to light-harvesting cadmium sulfide (CdS) nanotrystals of varying crystallographic phase content. Quantitative analysis of Synchrotron high-resolution X-ray. diffraction data of CdS nanocrystals precisely reveals the presence of both wurtzite and zinc blende phases in varying amounts. The,estimated content of crystal phases is observed to be strongly dependent on an important synthesis parameter, viz., the ratio of the two solvents. The biphasit nature of CdS influences directly the shape of the nanocrystal at long reaction times as well as the transfer of the photoexcited electrons from the CdS to TiO2 as obtained from transient absorption spectroscopy. A higher amount of zinc blende Phase is observed to be beneficial for fast electron transfer across the CdS-TiO2 interface. The electron transfer rate constant differs by one order of magnitude between the CdS nanocryStals and varies linearly with the fraction of the phases.
Resumo:
A poly(methyloctadecylsilane) oligomer was synthesized by a typical Wurtz coupling reaction. Upon cooling, three transitions were observed at temperatures of 39.9, 37.5 and 33.9 degreesC at a rate of 2.5 degreesC/min in differential scanning calorimetry (DSC). The first transition, with enthalpy change of 0.47 kT/mol and supercooling of 0.2 degreesC, was characteristic of the conformational change in the Si-Si backbone into an all-trans conformation, which was detected by temperature-dependent Fourier transform infrared (FT-FR) spectroscopy. The second and the third transitions with large supercooling were identified as the formation of two-dimensional hexagonal crystal packing and three-dimensional two-chain orthorhombic crystal packing, respectively. The crystal structure was determined by the combination of WAXD and transmission electron microscopy (TEM) experiments. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.
Resumo:
The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a∼0.632) to Hexagonal (c/a∼1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction β-Ti / α-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The α phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume change is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released. © 2010 IOP Publishing Ltd.
Resumo:
Crystallographic and microstructural properties of Ho(Ni,Co,Mn)O3± perovskite-type multiferroic material are reported. Samples were synthesized with a modified polymeric precursor method. The synchrotron X-ray powder diffraction (SXRPD) technique associated to Rietveld refinement method was used to perform structural characterization. The crystallographic structures, as well as microstructural properties, were studied to determine unit cell parameters and volume, angles and atomic positions, crystallite size and strain. X-ray energies below the absorption edges of the transition metals helped to determine the mean preferred atomic occupancy for the substituent atoms. Furthermore, analyzing the degree of distortion of the polyhedra centered at the transitions metal atoms led to understanding the structural model of the synthesized phase. X-ray photoelectron spectroscopy (XPS) was performed to evaluate the valence states of the elements, and the tolerance factor and oxygen content. The obtained results indicated a small decrease distortion in structure, close to the HoMnO3 basis compound. In addition, the substituent atoms showed the same distribution and, on average, preferentially occupied the center of the unit cell.
Resumo:
The fabrication of highly-oriented polycrystalline ceramics of Bi 5Fe 0.5Co 0.5Ti 3O 15, prepared via molten salt synthesis and uniaxial pressing of high aspect ratio platelets is reported. Electron backscatter images show a secondary phase within the ceramic which is rich in cobalt and iron. The concentration of the secondary phase obtained from scanning electron microscopy is estimated at less than 2% by volume, below the detection limit of x-ray diffraction (XRD). The samples were characterized by x-ray diffraction, polarization-electric field measurements, superconducting quantum interference device as a function of sample orientation and vibrating sample magnetometry as a function of temperature. It is inferred from the data that the observed ferromagnetic response is dominated by the secondary phase. This work highlights the importance of rigorous materials characterisation in the study of multiferroics as small amounts of secondary phase, below the limit of XRD, can lead to false conclusions.