961 resultados para pesticide contaminants
Resumo:
The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.
Resumo:
A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using standardized National Status and Trends Bioeffects Program methods. Three sites near the village of Port Graham were also sampled for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (e.g. depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. The following is the synopsis of findings • Sediments were mostly mixed silt and sand with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, chlorinated pesticides) were detected throughout the bay but at relatively low concentrations. With some exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. • Homer Harbor had elevated concentrations of metallic and organic contaminants. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Tributyltin was elevated in Homer Harbor relative to the other areas. • There was no evidence of residual PAHs attributable to oil spills, outside of local input in the confines of the harbor. • The benthic community is very diverse. Specific community assemblages were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. • Significant toxicity was virtually absent. • The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. • Selected metal concentrations were elevated at Port Graham relative to Kachemak Bay, probably due to local geology. Organic contaminants were elevated at a site south of the village.
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
This cruise report is a summary of a field survey conducted along the continental shelf of the northeastern Gulf of Mexico (GOM), encompassing 70,062 square kilometers of productive marine habitats located between the Mississippi Delta and Tampa Bay, August 13–21, 2010 on NOAA Ship Nancy Foster Cruise NF-10-09-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 50 stations throughout these waters using a random probabilistic sampling design. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, TPHs, PAHs, PCBs, PBDEs) in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, CDOM fluorescence, sediment grain size, and organic carbon content. Discrete water samples were collected just below the sea surface, in addition to any deeper subsurface depths where there was an occurrence of suspicious CDOM fluorescence signals, and analyzed for total BTEX/TPH and carcinogenic PAHs using immunoassay test kits. Other indicators of potential value from a human-dimension perspective were also recorded, including presence of any vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. In addition to the original project goals, both the scientific scope and general location of this project are relevant to addressing potential ecological impacts of the Deepwater Horizon oil spill. While sample analysis is still ongoing, a few preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using the sediment quality triad approach based on sediment chemistry, sediment toxicity, and benthic invertebrate community structure. The study area was subdivided into 5 strata based on geophysical and hydrodynamic patterns in the bay (eastern and western intertidal mud flats, eastern and western subtidal, and Homer Harbor). Three to seven locations were synoptically sampled within each stratum using a stratified random statistical design approach. Three sites near the village of Port Graham and two sites in the footprint of a proposed Homer Harbor expansion were also collected for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two amphipod bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. Sediments were mostly mixed silt and sand; characteristic of high energy habitats, with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, cyclodienes, cyclohexanes) were detected throughout the bay but at relatively low concentrations. Tributyltin was elevated in Homer Harbor relative to the other strata. With a few exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. Relative to other sites, Homer Harbor sites were shown to have elevated concentrations of metallic and organic contaminants. The Homer Harbor stratum however, is a deep, low energy depositional environment with fine grained sediment. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Concentration of PAHs is of a particular interest because of the legacy of oil spills in the region. There was no evidence of residual PAHs attributable to oil spills, outside of local input, beyond the confines of the harbor. Concentrations were one to ten times below NOAA sediment quality guidelines. Selected metal concentrations were found to be relatively elevated compared to other data collected in the region. However, levels are still very low in the scale of NOAA’s sediment quality guidelines, and therefore appear to pose little or no ecotoxicity threat to biota. Infaunal assessment showed a diverse assemblage with more than 240 taxa recorded and abundances greater than 3,000 animals m-22 in all but a few locations. Annelid worms, crustaceans, snails, and clams were the dominant taxa accounting for 63 %, 19%, 5%, and 7 % respectively of total individuals. Specific benthic community assemblages were identified that were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. Significant toxicity was virtually absent. Conditions at the sites immediately outside the existing Homer Harbor facility did not differ significantly from other subtidal locations in the open Kachemak Bay. The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. Contaminant conditions were variable depending on specific location. Selected metal concentrations were elevated at Port Graham and some were lower relative to Kachemak Bay, probably due to local geology. Some organic contaminants were accumulating at a depositional site.
Resumo:
This cruise report is a summary of a field survey conducted within the Sapelo Island National Estuarine Research Reserve (SINERR), located on the Georgia coastline, June 7 – June 13, 2009. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SINERR using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; bacterial contaminants in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, total suspended solids, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SINERR, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results will provide a comprehensive weight-of-evidence basis for evaluating current condition (aka a “state-of-the-SINEER environmental report”) and serve as a quantitative benchmark for tracking any future changes due to either natural or human disturbances. Another goal of the study is to demonstrate its utility as a possible model for assessing the status of condition at other NEERS sites using similar and consistent methods to promote system-wide regional and national comparisons.
Resumo:
NOAA’s Mussel Watch Program was designed to monitor the status and trends of chemical contamination of U.S. coastal waters, including the Great Lakes. The Program began in 1986 and is one of the longest running, continuous coastal monitoring programs that is national in scope. NOAA established Mussel Watch in response to a legislative mandate under Section 202 of Title II of the Marine Protection, Research and Sanctuaries Act (MPRSA) (33 USC 1442). In addition to monitoring contaminants throughout the Nation’s coastal shores, Mussel Watch stores samples in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. In recent years, flame retardant chemicals, known as polybrominated diphenyl ethers (PBDEs), have generated international concern over their widespread distribution in the environment, their potential to bioaccumulate in humans and wildlife, and concern for suspected adverse human health effects. The Mussel Watch Program, with additional funding provided by NOAA’s Oceans and Human Health Initiative, conducted a study of PBDEs in bivalve tissues and sediments. This report, which represents the first national assessment of PBDEs in the U.S. coastal zone, shows that they are widely distributed. PBDE concentrations in both sediment and bivalve tissue correlate with human population density along the U.S. coastline. The national and watershed perspectives given in this report are intended to support research, local monitoring, resource management, and policy decisions concerning these contaminants.
Resumo:
This document contains analytical methods that detail the procedures for determining major and trace element concentrations in bivalve tissue and sediment samples collected as part of the National Status and Trends Program (NS&T) for the years 2000-2006. Previously published NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) detail trace element analyses for the years 1984-1992 and 1993-1996, respectively, and include ancillary, histopathology, and contaminant (organic and trace element) analytical methods. The methods presented in this document for trace element analysis were utilized by the NS&T Mussel Watch and Bioeffects Projects. The Mussel Watch Project has been monitoring contaminants in bivalves and sediment for over 20 years, and is the longest active contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are monitored on biennial and decadal timescales using bivalve tissue and sediment, respectively. The Bioeffects Project applies the sediment quality approach, which uses sediment contamination measurements, toxicity tests and benthic macroinfauna quantification to characterize pollution in selected estuaries and coastal embayments. Contaminant assessment is a core function of both projects. Although only one contract laboratory was used by the NS&T Program during the specified time period, several analytical methods and instruments were employed. The specific analytical method, including instrumentation and detection limit, is noted for each measurement taken and can be found at http://NSandT.noaa.gov. The major and trace elements measured by the NS&T Program include: Al, Si, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Sn, Sb, Ag, Cd, Hg, Tl and Pb.
Resumo:
Fingerlings of three Indian major carps, viz. Catla catla (Hamilton-Buchanon), Labeo rohita (Hamilton-Buchanon) and Cirrhinus mrigala (Hamilton-Buchanon), were exposed to different concentrations of chlorpyrifos (lorsban 10 G), cadusafos (rugby 10 G) and diazinon (basudin 10 G) for a period of 96h with a view to determine the median lethal concentrations (LC sub50) values for each of chemicals. Of the tested concentrations, chlorpyrifos at a dose of 6.65 ppm, cadusafos at 2.0 ppm and diazinon at a dose of 8.40 ppm or above induced 100% mortalities within 96h of exposure. The 96h LC sub50 values of chlorpyrefos, cadusafos and diazinon were 1.66, 0.72 and 2.10 ppm for C. catla, 2.35, 0.72 and 2.97 for L. rohita and 2.35, 0.72 and 2.10 ppm for C. mrigala, respectively. Pesticide induced behavioral abnormalities observed in the present study included erratic movements, rapid operculum activities, jumping of fish out of the test media, violent spasm and convulsion.
Resumo:
Abrasive wear is likely to occur whenever a hard asperity or a trapped hard particle is dragged across a softer surface, and it has been estimated that this form of wear contributes to as many as half of the wear problems that are met in industry. Such damaging hard particles may be external contaminants, products of corrosion or even the debris from previous wear events. During the life of a component, damage caused by individual asperity or particle interactions builds up and, at each stage of its life, the worn surface is the result of many such superimposed wear events. The practical, quantitative prediction of wear rates depends on having both a satisfactory understanding of individual interactions and a suitable procedure for combining these when subsequent contacts are made on a surface whose topography and material properties may have been much changed Irom their initial states. The paper includes some details of an analytical model for the interaction of a representative asperity and the worn surface which can both predict the frictional force and the balance between ploughing, when material is displaced but not lost from the surface, and micromachining or cutting, when actual detachment occurs. Experiments tö !rvvéSuQ8Î8 the validity of the model have been carried out on a novel wear rig which provides very precise control over the position of the asperity and the counterface. This facility, together with that of on-board profilometry, means that it is possible to carry out wear experiments on areas of the surface whose previous deformation history is well known; in this way it is possible to follow the development of a worn surface in a controlled manner as the damage from individual wear events accumulates. Experimental data on the development of such a surface, produced by repeated parallel abrasion, are compared with the predictions of the model. © 1992 IOP Publishing Ltd.
Resumo:
Following the global stringent legislations regulating the wastes generated from the drilling process of oil exploration and production activities, the management of hazardous drill cuttings has become one of the pressing needs confronting the petroleum industry. Most of the prevalent treatment techniques adopted by oil companies are extremely expensive and/or the treated product has to be landfilled without any potential end-use; thereby rendering these solutions unsustainable. The technique of stabilisation/solidification is being investigated in this research to treat drill cuttings prior to landfilling or for potential re-use in construction products. Two case studies were explored namely North Sea and Red Sea. Given the known difficulties with stabilising/solidifying oils and chlorides, this research made use of model drill cutting mixes based on typical drill cutting from the two case studies, which contained 4.2% and 10.95% average concentrations of hydrocarbons; and 2.03% and 2.13% of chlorides, by weight respectively. A number of different binders, including a range of conventional viz. Portland cement (PC) as well as less-conventional viz. zeolite, or waste binders viz. cement kiln dust (CKD), fly ash and compost were tested to assess their ability to treat the North Sea and Red Sea model drill cuttings. The dry binder content by weight was 10%, 20% and 30%. In addition, raw drill cuttings from one of the North Sea offshore rigs were stabilised/solidified using 30% PC. The characteristics of the final stabilised/solidified product were finally compared to those of thermally treated cuttings. The effectiveness of the treatment using the different binder systems was compared in the light of the aforementioned two contaminants only. A set of physical tests (unconfined compressive strength (UCS)), chemical tests (NRA leachability) and micro-structural examinations (using scanning electron microscopy (SEM), and X-ray diffraction (XRD)) were used to evaluate the relative performance of the different binder mixes in treating the drill cuttings. The results showed that the observed UCS covered a wide range of values indicating various feasible end-use scenarios for the treated cuttings within the construction industry. The teachability results showed the reduction of the model drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the 30% and 20% binders for chloride concentrations, and (b) by the 20% and 30% of compost-PC and CKD-PC binders for the Red Sea cuttings. The 20% and 30% compost-PC and CKD-PC binders successfully reduced the leached oil concentration of the North Sea cuttings to inert levels. Copyright 2007, Society of Petroleum Engineers.
Resumo:
Acetylcholinesterase and serum glutamate oxaloacetate transaminase enzymes have been used as marker monitoring the effect of neem seed based pesticide Neemta 2100 on the fish, Oreochromis mossambicus. Fishes exposed to sublethal concentrations of Neemta 2100 for acute periods of 24 and 48 hours were sacrificed to determine enzyme activities in serum affected due to toxicity. Laboratory studies of in vivo exposure of this pesticide showed synergistic inhibitory effect during acute period of toxicity. Acetylcholinesterase was noticed as 6.25 µm substrate hydrolyzed/mg protein/hour and serum glutamate oxaloacetate transaminase was noticed as 36.71 µm substrate hydrolyzed/mg protein/hour in control fish serum. Significant decrease in GOT level in Neemta 2100 treated fishes after short term exposure indicated its severe toxicity to fish.
Resumo:
Attempts have been made to characterize and purify immunoglobulins from the serum of Clarias gariepinus, which has been immunized with bovine serum albumen. Initially, the proteins in the serum were chromatographed successively by affinity chromatography column. The affinity-purified fraction was concentrated and checked in SDS-PAGE, two bands of heavy chain and two bands of light chain were observed. Since teleost immunoglobulins have been shown to belong to a single class, the extra bands in light and heavy chains in the present study might be the breakdown of immunoglobulin or some unpurified contaminants. The affinity-purified fraction was also subjected to gel filtration chromatography column.