953 resultados para peripheral nervous system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Patients from a previous study of neuropathic pain (NP) in the Spanish primary care setting still had symptoms despite treatment. Subsequently, patients were treated as prescribed by their physician and followed up for 3 months. Since pregabalin has been shown to be effective in NP, including refractory cases, the objective of this study was to assess the effectiveness of pregabalin therapy in patients with NP refractory to previous treatments. METHODS This was a post hoc analysis of pregabalin-naïve NP patients treated with pregabalin in a 3-month follow-up observational multicenter study to assess symptoms and satisfaction with treatment. Patients were evaluated with the Douleur Neuropathique en 4 questions (DN4), the Brief Pain Inventory (BPI) and the Treatment Satisfaction for Medication Questionnaire (SATMED-Q) overall satisfaction domain. RESULTS 1,670 patients (mean age 58 years, 59 % women), previously untreated or treated with ≥1 drug other than pregabalin, were treated with pregabalin (37 % on monotherapy). At 3 months, pain intensity and its interference with activities decreased by half (p < 0.0001), while the number of days with no or mild pain increased by a mean of 4.5 days (p < 0.0001). Treatment satisfaction increased twofold (p < 0.0001). Patients with a shorter history of pain and those with neuralgia and peripheral nerve compression syndrome (PCS) as etiologies had the highest proportion on monotherapy and showed the greatest improvements in pain-related parameters in their respective group categories. CONCLUSION Treatment with pregabalin (as monotherapy or combination therapy) provides benefits in pain and treatment satisfaction in patients with NP, including refractory cases. Shorter disease progression and neuralgia and PCS etiologies are favorable factors for pregabalin treatment response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10(-4), pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. As such, they participate to a more generalized phenomenon: the signaling of peripheral metabolic changes to the central nervous system. The physiological importance that the interactions occurring between peripheral metabolic factors and the central nervous system bear for the control of food intake is increasingly recognized. The central mechanisms implicated are the focus of attention of very many research groups worldwide. We review here the experimental data that suggest that similar mechanisms are at play for the metabolic control of the neuroendocrine reproductive function. It is appearing that metabolic signals are integrated at the levels of first-order neurons equipped with the proper receptors, ant that these neurons send their signals towards hypothalamic GnRH neurons which constitute the integrative element of this network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: In forensic toxicology, cocaine is better known for its powerful stimulating effects of nervous system and its high potential for recreational abuse, than for his therapeutic use. However, cocaine is still use as a topical anesthetic and peripheral vasoconstrictor in surgeries of eye, ear, nose and throat. Last decade, an increase of the presence of cocaine and metabolites in blood samples of drivers suspected to drive under the influence of drugs (DUID) was observed in Switzerland (Augsburger et al., Forensic Sci Int 153 (2005) 11-15; Senna et al., Forensic Sci Int 198 (2010) 11-16). Observed blood concentration ranges of cocaine and benzoylecgonine were 10-925 μg/L and 20-5200 μg/L, respectively. Since 2005, zero-tolerance approach was introduced in the Swiss legislation for different substances, especially cocaine (analytical cutoff: 15 μg/L). Thus, the interpretation often amounts to determine if the concentration is situated above or under the limit. However, it is important for the interpretation to take into account the context and to be critical with the obtained results, at the risk of ending in erroneous conclusions. Methods: Systematical toxicological analyses were performed on blood and urine, if available, for 5 DUID cases, as already published (Augsburger et al., Forensic Sci Int 153 (2005)). Positive results were confirmed and drugs were quantified in biological samples by GCMS, GC-MS/MS or LC-MS/MS. Results: Administration of cocaine after traffic accident was identified in five cases. All people were admitted to the emergency room because of severe trauma. Maxillofacial surgery was done shortly after admission to the emergency room, involving use of nasal application of cocaine (swab). For all cases, use of cocaine swab was not mentioned in the document filled by the police and by medical staff requested for blood and urine sampling. The information was obtained retrospectively after consultation of the medical records, without precise indication of the application time or dose. Case 1. A 83-year old man (pedestrian) was hit by a car. Blood (+11h after the accident): cocaine (16 μg/L), benzoylecgonine (370 μg/L). Urine: cocaine (1700 μg/L), benzoylecgonine (560 μg/L). Case 2. A 84-year old woman (pedestrian) was hit by a car. Blood (+1.5h after the accident): cocaine (230 μg/L), benzoylecgonine (370 μg/L). Urine was not available. Hair (+4 months after the accident): segment 1 (0-2 cm), cocaine not detected; segment 2 (2-4 cm), cocaine: <0.5 ng/mg. Case 3. A 66-year old man was involved in a car/car accident. He died 2 hours and 5 minutes after the crash. Blood (+1.5h after the accident): cocaine and metabolites not detected. Blood (+2h after the accident): cocaine (1750 μg/L), benzoylecgonine (460 μg/L). Blood (post-mortem): cocaine (370 μg/L), benzoylecgonine (200 μg/L). Urine (+1.5h after the accident): cocaine not detected. Case 4. A 57-year old woman on a motor scooter was hit by a car. She died 2 hours and 10 minutes after the crash. Blood (+0.5h after the accident): cocaine and metabolites not detected. Urine (post-mortem): cocaine (<20 μg/L), benzoylecgonine (120 μg/L). Case 5. A 30-year old man was involved in a car accident. Blood (+4h after the accident): cocaine (29 μg/L), benzoylecgonine (< 20 μg/L). Urine (+4h after the accident): cocaine and metabolites not detected. Ethanol (1,32 g/kg) and cannabinoids (THC (2,0 μg/L), THCCOOH (38 μg/L)) were also detected in blood. Conclusion: To our knowledge, this is the first description of DUID cases involving therapeutic use of cocaine after an accident. These results indicate that even if a per se law is effective for prosecution case of DUID, a critical interpretation of the results is always needed, especially if a medical intervention occurs after an accident.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) is associated with significant morbidity and mortality, as a result of the progression towards cirrhosis and hepatocellular carcinoma. Additionally, HCV seems to be an independent risk factor for cardiovascular diseases (CVD) due to its association with insulin resistance, diabetes and steatosis. HCV infection represents an initial step in the chronic inflammatory cascade, showing a direct role in altering glucose metabolism. After achieving sustained virological response, the incidence of insulin resistance and diabetes dramatically decrease. HCV core protein plays an essential role in promoting insulin resistance and oxidative stress. On the other hand, atherosclerosis is a common disease in which the artery wall thickens due to accumulation of fatty deposits. The main step in the formation of atherosclerotic plaques is the oxidation of low density lipoprotein particles, together with the increased production of proinflammatory markers [tumor necrosis factor-α, interleukin (IL)-6, IL-18 or C-reactive protein]. The advent of new direct acting antiviral therapy has dramatically increased the sustained virological response rates of hepatitis C infection. In this scenario, the cardiovascular risk has emerged and represents a major concern after the eradication of the virus. Consequently, the number of studies evaluating this association is growing. Data derived from these studies have demonstrated the strong link between HCV infection and the atherogenic process, showing a higher risk of coronary heart disease, carotid atherosclerosis, peripheral artery disease and, ultimately, CVD-related mortality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). METHODS: In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with (13)N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. RESULTS: There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = -0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 +/- 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 +/- 0.24 vs. 0.74 +/- 0.23 and 1.82 +/- 0.50 vs. 1.95 +/- 0.51 ml/g/min; p < or = 0.05, respectively) and also during CPT in DM but less pronounced (0.81 +/- 0.24 vs. 0.83 +/- 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = -0.36, p < or = 0.014; r = -0.46, p < or = 0.007; and r = -0.33, p < or = 0.041, respectively). CONCLUSIONS: The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Descriptors: cardiovascular patterns, emotion, affective pictures In this study we assessed blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) in response to 13 picture series in 18 men and 19 women in order to investigate their hemodynamic responses associated with activation of the appetitive and defensive motivational systems underlying emotional experience. Skin conductance level (SCL) was also recorded. BP and SV increased with increasing self-rated arousal both for appetitive and defensive activation, whereas HR decelerated more in response to negative than positive and neutral pictures. TPR showed a general increase from baseline to picture processing but was unrelated to self-rated valence and arousal. These findings suggest that affective modulation of the cardiovascular response to affective pictures is primarily myocardial. The observed response pattern is consistent with a configuration of cardiac sympathetic-parasympathetic coactivation. The relationships between self-reported arousal, BP and SV were mainly exhibited by men suggesting that increases in the sympathetic inotropic effect to the heart with increasing self-rated arousal might be larger in men than in women. In contrast, SCL covaried positively with self-rated arousal both in men and women. This suggests that sex differences in the affective modulation of the responses to pictures may be restricted to specific cardiovascular parameters and support the contention that the sympathetic nervous system does not discharge as a whole.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists (CAs) and blockers of the renin-angiotensin system [angiotensin-converting enzyme (ACE) inhibitors and angiotensin II antagonists (ARBs)] are widely used today to initiate antihypertensive treatment but, when given as monotherapy, do not suffice in most patients to normalise blood pressure (BP). Combining a CA and either an ACE-inhibitor or an ARB considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. Several fixed-dose combinations are available (CA + ACE-inhibitors: amlodipine + benazepril, felodipine + ramipril, verapamil + trandolapril; CA + ARB: amlodipine + valsartan). They are expected not only to improve BP control, but also to facilitate long-term adherence with antihypertensive therapy, thereby providing maximal protection against the cardiovascular and renal damage caused by high BP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The effects of β(2)-agonists on human skeletal muscle contractile properties, particularly on slow fibers, are unclear. Moreover, it remains to be ascertained whether central motor drive (CMD) during voluntary contractions could counter for eventual contractile alterations induced by β(2)-agonists. This study investigated central and peripheral neuromuscular adjustments induced by β(2)-agonist terbutaline on a predominantly slow human muscle, the soleus. METHODS: Ten recreationally active men ingested either a single dose of 8 mg of terbutaline or placebo in a randomized double-blind order (two experimental sessions). Isometric plantarflexion torque was measured during single and tetanic (10 and 100 Hz) stimulations as well as during submaximal and maximal voluntary contractions (MVC). Twitch peak torque and half-relaxation time were calculated. CMD was estimated via soleus electromyographic recordings obtained during voluntary contractions performed at approximately 50% MVC. RESULTS: MVC and twitch peak torque were not modified by terbutaline. Twitch half-relaxation time was 28% shorter after terbutaline administration compared with placebo (P < 0.001). Tetanic torques at 10 and 100 Hz were significantly lower after terbutaline intake compared with placebo (-40% and -24% respectively, P < 0.001). Despite comparable torque of submaximal voluntary contractions in the two conditions, CMD was 7% higher after terbutaline ingestion compared with placebo (P < 0.01). CONCLUSION: These results provide evidence that terbutaline modulates the contractility of the slow soleus muscle and suggest that the increased CMD during submaximal contractions may be viewed as a compensatory adjustment of the central nervous system to counter the weakening action induced by terbutaline on the contractile function of slow muscle fibers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is present in the brain, the adrenal medulla, and peripheral sympathetic nerves. This peptide is released together with catecholamines during sympathoadrenal activation. It possesses direct vasoconstrictor properties that are not dependent on simultaneous adrenergic activation. Moreover, it potentiates the vascular effect of several stimulatory substances and may contribute to the modulation of blood pressure responsiveness under a number of circumstances. NPY may also be indirectly involved in the control of blood pressure through regulating the release of hormones with well-established actions on the cardiovascular system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The olfactory system is an attractive model to study the genetic mechanisms underlying evolution of the nervous system. This sensory system mediates the detection and behavioural responses to an enormous diversity of volatile chemicals in the environment and displays rapid evolution, as species acquire, modify and discard olfactory receptors and circuits to adapt to new olfactory stimuli. Drosophilids provide an attractive model to study these processes. The availability of 12 sequenced genomes of Drosophila species occupying diverse ecological niches provides a rich resource for genomic analyses. Moreover, one of these species, Drosophila melanogaster, is amenable to a powerful combination of genetic and electrophysiological analyses. D. melanogaster has two distinct families of olfactory receptors to detect odours, the well-characterised Odorant Receptors (ORs) and the recently identified lonotropic Receptors (IRs). In my thesis, I have provided new insights into the genetic mechanisms underlying olfactory system evolution through three distinct, but interrelated projects. First, I performed a comparative genomic analysis of the IR repertoire in 12 sequenced Drosophila species, which has revealed that the olfactory IRs are highly conserved across species. By contrast, a large fraction of IRs that are not expressed in the olfactory system - and which may be gustatory receptors - are much more variable in sequence and gene copy number. Second, to identify ligands for IR expressing olfactory sensory neurons, I have performed an electrophysiological screen in D. melanogaster using a panel of over 160 odours. I found that the IRs respond to a number of amines, aldehydes and acids, contrasting with the chemical specificity of the OR repertoire, which is mainly tuned to esters, alcohols and ketones. Finally, the identification of ligands for IRs in this species allowed me to investigate in detail the molecular and functional evolution of a tandem array of IRs, IR75a/IR75b/IR75c, in D. sechellia. This species is endemic to the Seychelles archipelago and highly specialised to breed on the fruits of Morinda citrifolia, which is repulsive and toxic for other Drosophila species. These studies led me to discover that receptor loss, changes in receptor specificity and changes in receptor expression have likely played an important role during the evolution of these IRs in D. sechellia. These changes may explain, in part, the unique chemical ecology of this species. - Le système olfactif est un excellent modèle pour étudier les mécanismes génétiques impliqués dans l'étude de l'évolution du système nerveux. Ce système sensoriel permet la détection de nombreux composés volatils présents dans l'environnement et est à la base des réponses comportementales. Il est propre à chaque espèce et évolue rapidement en modifiant ou en éliminant des récepteurs et leurs circuits olfactifs correspondants pour s'adapter à de nouvelles odeurs. Pour étudier le système olfactif et son évolution, nous avons décidé d'utiliser la drosophile comme modèle. Le séquençage complet de 12 souches de drosophiles habitant différentes niches écologiques permet une analyse génomique conséquente. De plus, l'une de ces espèces Drosophila melanogaster permet la combinaison d'analyses génétiques et électrophysiologiques. En effet, D. melanogaster possède 2 familles distinctes de récepteurs olfactifs qui permettent la détection d'odeurs: les récepteurs olfactifs (ORs) étant les mieux caractérisés et les récepteurs ionotropiques (IRs), plus récemment identifiés. Au cours de ma thèse, j'ai apporté des nouvelles connaissances qui m'ont permis de mieux comprendre les mécanismes génétiques à la base de l'évolution du système olfactif au travers de trois projets différents, mais interdépendants. Premièrement, j'ai réalisé une analyse génomique comparative de l'ensemble des IRs dans les 12 souches de drosophiles séquencées jusqu'à présent. Ceci a montré que les récepteurs olfactifs IRs sont hautement conservés parmi l'ensemble de ces espèces. Au contraire, une grande partie des IRs qui ne sont pas exprimés dans le système olfactif, et qui semblent être des récepteurs gustatifs, sont beaucoup plus variables dans leur séquence et dans le nombre de copie de gènes. Deuxièmement, pour identifier les ligands des récepteurs IRs exprimés par les neurones sensoriels olfactifs, j'ai réalisé une étude électrophysiologique chez D. melanogaster e η testant l'effet de plus de 160 composés chimiques sur les IRs. J'ai trouvé que les IRs répondent à un nombre d'amines, d'aldéhydes et d'acides, contrairement aux récepteurs olfactifs ORs qui eux répondent principalement aux esthers, alcools et cétones. Finalement, l'identification de ligands pour les IRs dans ces espèces m'a permis d'étudier en détail l'évolution fonctionnelle et moléculaire des IR75a/IR75b/IR75c dans D. sechellia. Cette espèce est endémique de l'archipel des Seychelles et se nourrit spécifiquement du fruit Morinda citrifolia qui est répulsif et toxique pour d'autres souches de drosophiles. Ces études m'ont poussé à découvrir que, la perte de IR75a, le changement dans la spécificité de IR75b ainsi que le changement dans l'expression de IR75c ont probablement joué un rôle important dans l'évolution des IRs chez D. sechellia. Ces changements peuvent expliquer, en partie, l'écologie chimique propre à cette espèce. Résumé français large public Le système olfactif permet aux animaux de détecter des milliers de molécules odorantes, les aidant ainsi à trouver de la nourriture, à distinguer si elle est fraîche ou avariée, à trouver des partenaires sexuels, ainsi qu'à éviter les prédateurs. Selon l'environnement et le mode de vie des espèces, le système olfactif doit détecter des odeurs très diverses ; en effet, un moustique qui recherche du sang humain pour se nourrir doit détecter des odeurs bien différentes d'une abeille qui recherche des fleurs. Dans ma thèse, j'ai essayé de comprendre comment les systèmes olfactifs d'une espèce évoluent pour s'adapter aux exigences induites par son environnement. Un très bon modèle pour étudier cela est la drosophile dont les différentes espèces se nichent dans des habitats très divers. Pour ce faire, j'ai étudié les récepteurs olfactifs de différentes espèces de la drosophile. Ces récepteurs sont des protéines qui se lient à des odeurs spécifiques. Lorsqu'ils se lient, ils activent un neurone qui envoie un signal électrique au cerveau. Ce signal est ensuite traité par ce dernier qui indique à la mouche si l'odeur est attractive ou répulsive. J'ai identifié les récepteurs olfactifs de plusieurs espèces de drosophile et étudié s'il y avait des différences entre elles. La plupart des récepteurs sont similaires entre les espèces, cependant dans l'une d'entre elles, certains récepteurs sont différents. Ce fait est particulièrement intéressant car cette espèce de drosophile se nourrit de fruits que les autres espèces n'apprécient pas. Comme nous ne savons pas quels récepteurs se lient à quelles odeurs, j'ai testé un grand nombre de composants odorants. Ceci m'a permis de constater que, effectivement, certains changements produits dans ces récepteurs expliquent pourquoi cette espèce aime particulièrement ces fruits. En outre, mes résultats contribuent à mieux comprendre les changements génétiques qui sont impliqués dans l'évolution du système olfactif.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IMPORTANCE: The best treatment option for primary vitreoretinal lymphoma (PVRL) without signs of central nervous system lymphoma (CNSL) involvement determined on magnetic resonance imaging or in cerebrospinal fluid is unknown. OBJECTIVE: To evaluate the outcomes of treatment regimens used for PVRL in the prevention of subsequent CNSL. DESIGN, SETTING, AND PARTICIPANTS: A retrospective cohort study was conducted at 17 referral ophthalmologic centers in Europe. We reviewed clinical, laboratory, and imaging data on 78 patients with PVRL who did not have CNSL on presentation between January 1, 1991, and December 31, 2012, with a focus on the incidence of CNS manifestations during the follow-up period. INTERVENTIONS: The term extensive treatment was used for various combinations of systemic and intrathecal chemotherapy, whole-brain radiotherapy, and peripheral blood stem cell transplantation. Therapy to prevent CNSL included ocular radiotherapy and/or ocular chemotherapy (group A, 31 patients), extensive systemic treatment (group B, 21 patients), and a combination of ocular and extensive treatment (group C, 23 patients); 3 patients did not receive treatment. A total of 40 patients received systemic chemotherapy. MAIN OUTCOMES AND MEASURES: Development of CNSL following the diagnosis of PVRL relative to the use or nonuse of systemic chemotherapy and other treatment regimens. RESULTS: Overall, CNSL developed in 28 of 78 patients (36%) at a median follow-up of 49 months. Specifically, CNSL developed in 10 of 31 (32%) in group A, 9 of 21 (43%) in group B, and 9 of 23 (39%) in group C. The 5-year cumulative survival rate was lower in patients with CNSL (35% [95% CI, 50% to 86%]) than in patients without CNSL (68% [95% CI, 19% to 51%]; P = .003) and was similar among all treatment groups (P = .10). Adverse systemic effects occurred in 9 of 40 (23%) patients receiving systemic chemotherapy; the most common of these effects was acute renal failure. CONCLUSIONS AND RELEVANCE: In the present series of patients with isolated PVRL, the use of systemic chemotherapy was not proven to prevent CNSL and was associated with more severe adverse effects compared with local treatment.