886 resultados para patterns detection and recognition
Resumo:
OBJECTIVES: The aim of this in vitro study was to assess the inter- and intra-examiner reproducibility and the accuracy of the International Caries Detection and Assessment System-II (ICDAS-II) in detecting occlusal caries. METHODS: One hundred and sixty-three molars were independently assessed twice by two experienced dentists using the 0- to 6-graded ICDAS-II. The teeth were histologically prepared and classified using two different histological systems [Ekstrand et al. (1997) Caries Research vol. 31, pp. 224-231; Lussi et al. (1999) Caries Research vol. 33, pp. 261-266] and assessed for caries extension. Sensitivity, specificity, accuracy and area under the ROC curve (A(z)) were obtained at D(2) and D(3) thresholds. Unweighted kappa coefficient was used to assess inter- and intra-examiner reproducibility. RESULTS: For the Ekstrand et al. histological classification the sensitivity was 0.99 and 1.00, specificity 1.00 and 0.69 and accuracy 0.99 and 0.76 at D(2) and D(3), respectively. For the Lussi et al. histological classification the sensitivity was 0.91 and 0.75, specificity 0.47 and 0.62 and accuracy 0.86 and 0.68 at D(2) and D(3), respectively. The A(z) varied from 0.54 to 0.73. The inter- and intra-examiner kappa values were 0.51 and 0.58, respectively. CONCLUSIONS: ICDAS-II presented good reproducibility and accuracy in detecting occlusal caries, especially caries lesions in the outer half of the enamel.
Resumo:
BACKGROUND: Control of brucellosis in livestock, wildlife and humans depends on the reliability of the methods used for detection and identification of bacteria. In the present study, we describe the evaluation of the recently established real-time PCR assay based on the Brucella-specific insertion sequence IS711 with blood samples from 199 wild boars (first group of animals) and tissue samples from 53 wild boars (second group of animals) collected in Switzerland. Results from IS711 real-time PCR were compared to those obtained by bacterial isolation, Rose Bengal Test (RBT), competitive ELISA (c-ELISA) and indirect ELISA (i-ELISA). RESULTS: In the first group of animals, IS711 real-time PCR detected infection in 11.1% (16/144) of wild boars that were serologically negative. Serological tests showed different sensitivities [RBT 15.6%, c-ELISA 7.5% and i-ELISA 5.5%] and only 2% of blood samples were positive with all three tests, which makes interpretation of the serological results very difficult. Regarding the second group of animals, the IS711 real-time PCR detected infection in 26% of animals, while Brucella spp. could be isolated from tissues of only 9.4% of the animals. CONCLUSION: The results presented here indicate that IS711 real-time PCR assay is a specific and sensitive tool for detection of Brucella spp. infections in wild boars. For this reason, we propose the employment of IS711 real-time PCR as a complementary tool in brucellosis screening programs and for confirmation of diagnosis in doubtful cases.
Resumo:
F. psychrophilum is the causative agent of Bacterial Cold Water Disease (BCW) and Rainbow Trout Fry Syndrome (RTFS). To date, diagnosis relies mainly on direct microscopy or cultural methods. Direct microscopy is fast but not very reliable, whereas cultural methods are reliable but time-consuming and labor-intensive. So far fluorescent in situ hybridization (FISH) has not been used in the diagnosis of flavobacteriosis but it has the potential to rapidly and specifically detect F. psychrophilum in infected tissues. Outbreaks in fish farms, caused by pathogenic strains of Flavobacterium species, are increasingly frequent and there is a need for reliable and cost-effective techniques to rapidly diagnose flavobacterioses. This study is aimed at developing a FISH that could be used for the diagnosis of F. psychrophilum infections in fish. We constructed a generic probe for the genus Flavobacterium ("Pan-Flavo") and two specific probes targeting F. psychrophilum based on 16S rRNA gene sequences. We tested their specificity and sensitivity on pure cultures of different Flavobacterium and other aquatic bacterial species. After assessing their sensitivity and specificity, we established their limit of detection and tested the probes on infected fresh tissues (spleen and skin) and on paraffin-embedded tissues. The results showed high sensitivity and specificity of the probes (100% and 91% for the Pan-Flavo probe and 100% and 97% for the F. psychrophilum probe, respectively). FISH was able to detect F. psychrophilum in infected fish tissues, thus the findings from this study indicate this technique is suitable as a fast and reliable method for the detection of Flavobacterium spp. and F. psychrophilum.
Resumo:
This study aimed to assess the performance of International Caries Detection and Assessment System (ICDAS), radiographic examination, and fluorescence-based methods for detecting occlusal caries in primary teeth. One occlusal site on each of 79 primary molars was assessed twice by two examiners using ICDAS, bitewing radiography (BW), DIAGNOdent 2095 (LF), DIAGNOdent 2190 (LFpen), and VistaProof fluorescence camera (FC). The teeth were histologically prepared and assessed for caries extent. Optimal cutoff limits were calculated for LF, LFpen, and FC. At the D (1) threshold (enamel and dentin lesions), ICDAS and FC presented higher sensitivity values (0.75 and 0.73, respectively), while BW showed higher specificity (1.00). At the D (2) threshold (inner enamel and dentin lesions), ICDAS presented higher sensitivity (0.83) and statistically significantly lower specificity (0.70). At the D(3) threshold (dentin lesions), LFpen and FC showed higher sensitivity (1.00 and 0.91, respectively), while higher specificity was presented by FC (0.95), ICDAS (0.94), BW (0.94), and LF (0.92). The area under the receiver operating characteristic (ROC) curve (Az) varied from 0.780 (BW) to 0.941 (LF). Spearman correlation coefficients with histology were 0.72 (ICDAS), 0.64 (BW), 0.71 (LF), 0.65 (LFpen), and 0.74 (FC). Inter- and intraexaminer intraclass correlation values varied from 0.772 to 0.963 and unweighted kappa values ranged from 0.462 to 0.750. In conclusion, ICDAS and FC exhibited better accuracy in detecting enamel and dentin caries lesions, whereas ICDAS, LF, LFpen, and FC were more appropriate for detecting dentin lesions on occlusal surfaces in primary teeth, with no statistically significant difference among them. All methods presented good to excellent reproducibility.
Resumo:
BACKGROUND Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Resumo:
Ecology and conservation require reliable data on the occurrence of animals and plants. A major source of bias is imperfect detection, which, however, can be corrected for by estimation of detectability. In traditional occupancy models, this requires repeat or multi-observer surveys. Recently, time-to-detection models have been developed as a cost-effective alternative, which requires no repeat surveys and hence costs could be halved. We compared the efficiency and reliability of time-to-detection and traditional occupancy models under varying survey effort. Two observers independently searched for 17 plant species in 44100m(2) Swiss grassland quadrats and recorded the time-to-detection for each species, enabling detectability to be estimated with both time-to-detection and traditional occupancy models. In addition, we gauged the relative influence on detectability of species, observer, plant height and two measures of abundance (cover and frequency). Estimates of detectability and occupancy under both models were very similar. Rare species were more likely to be overlooked; detectability was strongly affected by abundance. As a measure of abundance, frequency outperformed cover in its predictive power. The two observers differed significantly in their detection ability. Time-to-detection models were as accurate as traditional occupancy models, but their data easier to obtain; thus they provide a cost-effective alternative to traditional occupancy models for detection-corrected estimation of occurrence.
Resumo:
BACKGROUND Staphylococcus aureus has long been recognized as a major pathogen. Methicillin-resistant strains of S. aureus (MRSA) and methicillin-resistant strains of S. epidermidis (MRSE) are among the most prevalent multiresistant pathogens worldwide, frequently causing nosocomial and community-acquired infections. METHODS In the present pilot study, we tested a polymerase chain reaction (PCR) method to quickly differentiate Staphylococci and identify the mecA gene in a clinical setting. RESULTS Compared to the conventional microbiology testing the real-time PCR assay had a higher detection rate for both S. aureus and coagulase-negative Staphylococci (CoNS; 55 vs. 32 for S. aureus and 63 vs. 24 for CoNS). Hands-on time preparing DNA, carrying out the PCR, and evaluating results was less than 5 h. CONCLUSIONS The assay is largely automated, easy to adapt, and has been shown to be rapid and reliable. Fast detection and differentiation of S. aureus, CoNS, and the mecA gene by means of this real-time PCR protocol may help expedite therapeutic decision-making and enable earlier adequate antibiotic treatment.
Resumo:
Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.
Resumo:
The electroencephalogram (EEG) is a physiological time series that measures electrical activity at different locations in the brain, and plays an important role in epilepsy research. Exploring the variance and/or volatility may yield insights for seizure prediction, seizure detection and seizure propagation/dynamics.^ Maximal Overlap Discrete Wavelet Transforms (MODWTs) and ARMA-GARCH models were used to determine variance and volatility characteristics of 66 channels for different states of an epileptic EEG – sleep, awake, sleep-to-awake and seizure. The wavelet variances, changes in wavelet variances and volatility half-lives for the four states were compared for possible differences between seizure and non-seizure channels.^ The half-lives of two of the three seizure channels were found to be shorter than all of the non-seizure channels, based on 95% CIs for the pre-seizure and awake signals. No discernible patterns were found the wavelet variances of the change points for the different signals. ^
Resumo:
Este Proyecto Fin de Carrera trata sobre el reconocimiento e identificación de caracteres de matrículas de automóviles. Este tipo de sistemas de reconocimiento también se los conoce mundialmente como sistemas ANPR ("Automatic Number Plate Recognition") o LPR ("License Plate Recognition"). La gran cantidad de vehículos y logística que se mueve cada segundo por todo el planeta, hace necesaria su registro para su tratamiento y control. Por ello, es necesario implementar un sistema que pueda identificar correctamente estos recursos, para su posterior procesado, construyendo así una herramienta útil, ágil y dinámica. El presente trabajo ha sido estructurado en varias partes. La primera de ellas nos muestra los objetivos y las motivaciones que se persiguen con la realización de este proyecto. En la segunda, se abordan y desarrollan todos los diferentes procesos teóricos y técnicos, así como matemáticos, que forman un sistema ANPR común, con el fin de implementar una aplicación práctica que pueda demostrar la utilidad de estos en cualquier situación. En la tercera, se desarrolla esa parte práctica en la que se apoya la base teórica del trabajo. En ésta se describen y desarrollan los diversos algoritmos, creados con el fin de estudiar y comprobar todo lo planteado hasta ahora, así como observar su comportamiento. Se implementan varios procesos característicos del reconocimiento de caracteres y patrones, como la detección de áreas o patrones, rotado y transformación de imágenes, procesos de detección de bordes, segmentación de caracteres y patrones, umbralización y normalización, extracción de características y patrones, redes neuronales, y finalmente el reconocimiento óptico de caracteres o comúnmente conocido como OCR. La última parte refleja los resultados obtenidos a partir del sistema de reconocimiento de caracteres implementado para el trabajo y se exponen las conclusiones extraídas a partir de éste. Finalmente se plantean las líneas futuras de mejora, desarrollo e investigación, para poder realizar un sistema más eficiente y global. This Thesis deals about license plate characters recognition and identification. These kinds of systems are also known worldwide as ANPR systems ("Automatic Number Plate Recognition") or LPR ("License Plate Recognition"). The great number of vehicles and logistics moving every second all over the world, requires a registration for treatment and control. Thereby, it’s therefore necessary to implement a system that can identify correctly these resources, for further processing, thus building a useful, flexible and dynamic tool. This work has been structured into several parts. The first one shows the objectives and motivations attained by the completion of this project. In the second part, it’s developed all the different theoretical and technical processes, forming a common ANPR system in order to implement a practical application that can demonstrate the usefulness of these ones on any situation. In the third, the practical part is developed, which is based on the theoretical work. In this one are described and developed various algorithms, created to study and verify all the questions until now suggested, and complain the behavior of these systems. Several recognition of characters and patterns characteristic processes are implemented, such as areas or patterns detection, image rotation and transformation, edge detection processes, patterns and character segmentation, thresholding and normalization, features and patterns extraction, neural networks, and finally the optical character recognition or commonly known like OCR. The last part shows the results obtained from the character recognition system implemented for this thesis and the outlines conclusions drawn from it. Finally, future lines of improvement, research and development are proposed, in order to make a more efficient and comprehensive system.
Resumo:
Las bandas de las denominadas ondas milimétricas y submilimétricas están situadas en la región del espectro entre las microondas y el infrarrojo. La banda de milimétricas se sitúa entre 30 y 300 GHz, considerada normalmente como la banda EHF (Extremely High Frequency). El margen de frecuencias entre 300 y 3000 GHz es conocido como la banda de ondas submilimétricas o de terahercios (THz). Sin embargo, no toda la comunidad científica está de acuerdo acerca de las frecuencias que limitan la banda de THz. De hecho, 100 GHz y 10 THz son considerados comúnmente como los límites inferior y superior de dicha banda, respectivamente. Hasta hace relativamente pocos años, la banda de THz sólo había sido explotada para aplicaciones en los campos de la espectroscopía y la radioastronomía. Los avances tecnológicos en la electrónica de microondas y la óptica lastraron el desarrollo de la banda de THz. Sin embargo, investigaciones recientes han demostrado las ventajas asociadas a operar en estas longitudes de onda, lo que ha aumentado el interés y los esfuerzos dedicados a la tecnología de THz. A pesar de que han surgido un gran número de aplicaciones, una de las más prometedoras está en el campo de la vigilancia y la seguridad. Esta tesis está dedicada al desarrollo de radares de onda continua y frecuencia modulada (CW-LFM) de alta resolución en la banda de milimétricas, más concretamente, en las ventanas de atenuación situadas en 100 y 300 GHz. Trabajar en estas bandas de frecuencia presenta beneficios tales como la capacidad de las ondas de atravesar ciertos materiales como la ropa o el papel, opacos en el rango visible, y la posibilidad de usar grandes anchos de banda, obteniéndose así elevadas resoluciones en distancia. Los anchos de banda de 9 y 27 GHz seleccionados para los sistemas de 100 y 300 GHz, respectivamente, proporcionan resoluciones en distancia alrededor y por debajo del cm. Por otro lado, las aplicaciones objetivo se centran en la adquisición de imágenes a corto alcance. En el caso del prototipo a 300 GHz, su diseño se ha orientado a aplicaciones de detección a distancia en escenarios de vigilancia y seguridad. La naturaleza no ionizante de esta radiación supone una ventaja frente a las alternativas tradicionalmente usadas tales como los sistemas de rayos X. La presente tesis se centra en el proceso de diseño, implementación y caracterización de ambos sistemas así como de la validación de su funcionamiento. Se ha elegido una solución basada en componentes electrónicos, y no ópticos, debido a su alta fiabilidad, volumen reducido y amplia disponibilidad de componentes comerciales. Durante el proceso de diseño e implementación, se han tenido en cuenta varias directrices tales como la minimización del coste y la versatilidad de los sistemas desarrollados para hacer posible su aplicación para múltiples propósitos. Ambos sistemas se han utilizado en diferentes pruebas experimentales, obteniendo resultados satisfactorios. Aunque son sólo ejemplos dentro del amplio rango de posibles aplicaciones, la adquisición de imágenes ISAR de modelos de blancos a escala para detección automática así como la obtención de datos micro-Range/micro- Doppler para el análisis de patrones humanos han validado el funcionamiento del sistema a 100 GHz. Por otro lado, varios ejemplos de imágenes 3D obtenidas a 300 GHz han demostrado las capacidades del sistema para su uso en tareas de seguridad y detección a distancia. ABSTRACT The millimeter- and submillimeter-wave bands are the regions of the spectrum between the microwaves and the infrared (IR). The millimeter-wave band covers the range of the spectrum from 30 to 300 GHz, which is usually considered as the extremely high frequency (EHF) band. The range of frequencies between 300 and 3000 GHz is known as the submillimeter-wave or terahertz (THz) band. Nevertheless, the boundaries of the THz band are not accepted by the whole research community. In fact, 100 GHz and 10 THz are often considered by some authors as the lower and upper limit of this band, respectively. Until recently, the THz band had not been exploited for practical applications, with the exception of minor uses in the fields of spectroscopy and radio astronomy. The advancements on microwave electronics and optical technology left the well-known THz gap undeveloped. However, recent research has unveiled the advantages of working at these frequencies, which has motivated the increase in research effort devoted to THz technology. Even though the range of upcoming applications is wide, the most promising ones are in the field of security and surveillance. Particularly, this Ph.D. thesis deals with the development of high resolution continuouswave linear-frequency modulated (CW-LFM) radars in the millimeter-wave band, namely, in the attenuation windows located at 100 and 300 GHz. Working at these wavelengths presents several benefits such as the ability of radiation to penetrate certain materials, visibly opaque, and the great availability of bandwidth at these frequencies, which leads to high range resolution. The selected bandwidths of 9 and 27 GHz for these systems at 100 and 300 GHz, respectively, result in cm and sub-cm range resolution. On the other hand, the intended applications are in the field of short-range imaging. In particular, the design of the 300-GHz prototype is oriented to standoff detection for security and surveillance scenarios. The non-ionizing nature of this radiation allows safety concerns to be alleviated, in clear contrast to other traditional alternatives such as X-rays systems. This thesis is focused on the design, implementation and characterization process of both systems as well as the experimental assessment of their performances. An electronic approach has been selected instead of an optical solution so as to take advantage of its high reliability, reduced volume and the availability of commercial components. Through the whole design and implementation process, several guidelines such as low cost and hardware versatility have been also kept in mind. Taking advantage of that versatility, different applications can be carried out with the same hardware concept. Both radar systems have been used in several experimental trials with satisfactory results. Despite being mere examples within the wide range of fields of application, ISAR imaging of scaled model targets for automatic target recognition and micro-Range/micro-Doppler analysis of human patterns have validated the system performance at 100 GHz. In addition, 3D imaging examples at 300 GHz demonstrate the radar system’s capabilities for standoff detection and security tasks.
Resumo:
Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.