921 resultados para pacs: C6170K knowledge engineering techniques
Resumo:
Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.
Resumo:
Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.
Resumo:
Broad consensus has been reached within the Education and Cognitive Psychology research communities on the need to center the learning process on experimentation and concrete application of knowledge, rather than on a bare transfer of notions. Several advantages arise from this educational approach, ranging from the reinforce of students learning, to the increased opportunity for a student to gain greater insight into the studied topics, up to the possibility for learners to acquire practical skills and long-lasting proficiency. This is especially true in Engineering education, where integrating conceptual knowledge and practical skills assumes a strategic importance. In this scenario, learners are called to play a primary role. They are actively involved in the construction of their own knowledge, instead of passively receiving it. As a result, traditional, teacher-centered learning environments should be replaced by novel learner-centered solutions. Information and Communication Technologies enable the development of innovative solutions that provide suitable answers to the need for the availability of experimentation supports in educational context. Virtual Laboratories, Adaptive Web-Based Educational Systems and Computer-Supported Collaborative Learning environments can significantly foster different learner-centered instructional strategies, offering the opportunity to enhance personalization, individualization and cooperation. More specifically, they allow students to explore different kinds of materials, to access and compare several information sources, to face real or realistic problems and to work on authentic and multi-facet case studies. In addition, they encourage cooperation among peers and provide support through coached and scaffolded activities aimed at fostering reflection and meta-cognitive reasoning. This dissertation will guide readers within this research field, presenting both the theoretical and applicative results of a research aimed at designing an open, flexible, learner-centered virtual lab for supporting students in learning Information Security.
Resumo:
In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.
Resumo:
Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.
Resumo:
An important property for devices is the charge-carrier mobility values for discotic organic materials like hexa-peri-hexabenzocoronenes. A close relation exists between the degree of their columnar self-arrangement of the molecules and their mobilities. Within this first step an induction of a higher order via hydrogen-bonding was considered, which mainly pointed towards the improvement of the intracolumnar stacking of the materials. For the analytics a broad range of methods was used including differential scanning calorimetry (DSC), wide-angle X-ray diffractometry (WAXS), solid-state NMR spectroscopy and scanning tunneling microscopy (STM). Indeed, a specific influence of the hydrogen-bonds could be identified, although in several cases by the cost of a severe reduction of solubility and processability. This effect was dampened by the addition of a long alkyl chain next to the hydrogen-bond exerting functional group, which resulted in an improved columnar arrangement by retention of processability. In contrast to the before mentioned example of inducing a higher intracolumnar order by hydrogen-bonding, the focus was also be set upon larger aromatic systems. The charge-carrier mobility is also in close relation to the size of the aromatic core and larger π-areas are expected to lead to improved mobilities. For photovoltaic applications a high extinction coefficient over a broad range of the spectrum is favorable, which can also be achieved by enlarging the aromatic core component. In addition the stronger π-interactions between the aromatic core components should yield an improved columnar stability and order. However the strengthening of the π-interactions between the aromatic core components led to a reduction of the solubility and the processability due to the stronger aggregation of the molecules. This required the introduction of efficiently solubilizing features in terms of long alkyl chains in the corona of the aromatic entity, in combination of a distortion of the aromatic core moiety by bulky tert-butyl groups. By this approach not only the processing and cleaning of the materials with standard laboratory techniques became possible, but moreover the first structure-rich UV/vis and a resolved 1H-NMR spectra for an aromatic system two times larger than hexa-peri-hexabenzocoronene were recorded. The bulk properties in an extruded fiber as well as on the surface showed a columnar self-assembly including a phase in which a homeotropic alignment on a substrate was observed, which turns the material into an interesting candidate for future applications in electronic devices.
Resumo:
This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.
Resumo:
This thesis collects the outcomes of a Ph.D. course in Telecommunications engineering and it is focused on enabling techniques for Spread Spectrum (SS) navigation and communication satellite systems. It provides innovations for both interference management and code synchronization techniques. These two aspects are critical for modern navigation and communication systems and constitute the common denominator of the work. The thesis is organized in two parts: the former deals with interference management. We have proposed a novel technique for the enhancement of the sensitivity level of an advanced interference detection and localization system operating in the Global Navigation Satellite System (GNSS) bands, which allows the identification of interfering signals received with power even lower than the GNSS signals. Moreover, we have introduced an effective cancellation technique for signals transmitted by jammers, exploiting their repetitive characteristics, which strongly reduces the interference level at the receiver. The second part, deals with code synchronization. More in detail, we have designed the code synchronization circuit for a Telemetry, Tracking and Control system operating during the Launch and Early Orbit Phase; the proposed solution allows to cope with the very large frequency uncertainty and dynamics characterizing this scenario, and performs the estimation of the code epoch, of the carrier frequency and of the carrier frequency variation rate. Furthermore, considering a generic pair of circuits performing code acquisition, we have proposed a comprehensive framework for the design and the analysis of the optimal cooperation procedure, which minimizes the time required to accomplish synchronization. The study results particularly interesting since it enables the reduction of the code acquisition time without increasing the computational complexity. Finally, considering a network of collaborating navigation receivers, we have proposed an innovative cooperative code acquisition scheme, which allows exploit the shared code epoch information between neighbor nodes, according to the Peer-to-Peer paradigm.
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests
Resumo:
The growing substrate of the putting greens is considered a key factor for a healthy turf ecosystem. Actually detailed study on the effects of growth promoting bacteria and biostimulants on a professional sport turf are very limited. This thesis aimed to study the effectiveness of different microorganisms and biostimulants in order to improve the knowledge relative to the relationship between the beneficial microflora and root apparatus of sport turfs. The research project was divided in three principal steps: Initially, commercial products based on biostimulants and microorganisms were tested on a Lolium perenne L. essence grown in a controlled-environment. The principal evaluations were the study of the habitus of plants, biomass production and length of leaves and roots. Were studied the capacity of colonization of microorganisms within root tissues and rhizosphere. In the second step were developed two different biostimulant solutions based on effective microorganisms, mycorrhizae and humic acids. This test was conducted both on an Agrostis stolonifera putting green (Modena Golf & Country Club) in a semi-field condition and within a growth chamber on a Lolium perenne L. essence. Fungicide and chemicals applications were suspended in order to assess the effectiveness of the inoculants for nutrition and control of pests. In the last step, different microorganism mixes and biostimulants were tested on an experimental putting green in the Turf Research Center (TRC) (Virginia Tech, United States) in a real managing situation. The effects of different treatments were studied maintaining all chemicals and mechanicals managements scheduled during a sport season. Both growth-chamber and field results confirmed the capacity of microorganisms based biostimulants to promote the physiologic conditions of the plants, improve the growth of the roots and enhance the aesthetic performance of the turf. Molecular analysis confirmed the capacity of microorganisms to colonize the root tissues.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.
Resumo:
This thesis collects the outcomes of a Ph.D. course in Telecommunications Engineering and it is focused on the study and design of possible techniques able to counteract interference signal in Global Navigation Satellite System (GNSS) systems. The subject is the jamming threat in navigation systems, that has become a very increasingly important topic in recent years, due to the wide diffusion of GNSS-based civil applications. Detection and mitigation techniques are developed in order to fight out jamming signals, tested in different scenarios and including sophisticated signals. The thesis is organized in two main parts, which deal with management of GNSS intentional counterfeit signals. The first part deals with the interference management, focusing on the intentional interfering signal. In particular, a technique for the detection and localization of the interfering signal level in the GNSS bands in frequency domain has been proposed. In addition, an effective mitigation technique which exploits the periodic characteristics of the common jamming signals reducing interfering effects at the receiver side has been introduced. Moreover, this technique has been also tested in a different and more complicated scenario resulting still effective in mitigation and cancellation of the interfering signal, without high complexity. The second part still deals with the problem of interference management, but regarding with more sophisticated signal. The attention is focused on the detection of spoofing signal, which is the most complex among the jamming signal types. Due to this highly difficulty in detect and mitigate this kind of signal, spoofing threat is considered the most dangerous. In this work, a possible techniques able to detect this sophisticated signal has been proposed, observing and exploiting jointly the outputs of several operational block measurements of the GNSS receiver operating chain.
Resumo:
The thesis aims to expose the advances achieved in the practices of captive breeding of the European eel (Anguilla anguilla). Aspects investigated concern both approaches livestock (breeding selection, response to hormonal stimulation, reproductive performance, incubation of eggs) and physiological aspects (endocrine plasma profiles of players), as well as engineering aspects. Studies conducted on various populations of wild eel have shown that the main determining factor in the selection of wild females destined to captive breeding must be the Silver Index which may determine the stage of pubertal development. The hormonal induction protocol adopted, with increasing doses of carp pituitary extract, it has proven useful to ovarian development, with a synchronization effect that is positively reflected on egg production. The studies on the effects of photoperiod show how the condition of total darkness can positively influence practices of reproductions in captivity. The effects of photoperiod were also investigated at the physiological level, observing the plasma levels of steroids ( E2, T) and thyroid hormones (T3 and T4) and the expression in the liver of vitellogenin (vtg1 and vtg2) and estradiol membrane receptor (ESR1). From the comparison between spontaneous deposition and insemination techniques through the stripping is inferred as the first ports to a better qualitative and quantitative yield in the production of eggs capable of being fertilized, also the presence of a percentage of oocytes completely transparent can be used to obtain eggs at a good rate of fertility. Finally, the design and implementation of a system for recirculating aquaculture suited to meet the needs of species-specific eel showed how to improve the reproductive results, it would be preferable to adopt low-flow and low density incubation.
Resumo:
For the successful integration of bone tissue engineering constructs into patients, an adequate supply with oxygen and nutrients is critical. Therefore, prevascularisation of bone tissue engineering constructs is desirable for bone formation, remodelling and regeneration. Co-culture systems, consisting of human endothelial cells and primary osteoblasts (pOB) as well as osteosarcoma cell lines, represent a promising method for studying the mechanisms involved in the vascularisation of constructs in bone tissue en- gineering and could provide new insights into the molecular and cellular mechanisms that control essential processes during angiogenesis. The present study demonstrated the im- portant components of co-culture systems with a focus on bone tissue replacement and the angiogenic effects of pOB and osteosarcoma cell lines on human endothelial cells. Furthermore, the studies emphasised an overall approach for analysis of signal molecules that are involved in the angiogenic activation of human endothelial cells by the regulation of VEGF-related pathways at the transcriptional and translational levels. The osteosarcoma cell lines Cal-72, MG-63 and SaOS-2, as well as pOB from several donors, differed in their angiogenesis-inducing potential in 2-D and 3-D co-culture systems. SaOS-2 cells appeared to have a high osteogenic differentiation level with no detectable angiogenesis-inducing potential in co-culture with human endothelial cells. The angiogenic potential of the osteoblast-like cells is mainly correlated with the upregulation of essential angiogenic growth factors, such as VEGF, bFGF and HGF and the downregulation of the angiogenesis inhibitor, endostatin. However, other factors involved in angiogenic regulation were found to differ between SaOS-2 cells, compared to Cal-72 and MG-63. The present study focuses on VEGF pathway-effecting genes as key players in the regulation of angiogenesis. The levels of VEGF and VEGF-effecting genes, such as TGF-α and TIMP-2 are down-regulated in SaOS-2 cells. In contrast, direct regulators of VEGF, such as IL6, IL8 and TNF are strongly upregulated, which indicates disruptions in growth factor regulating pathways in SaOS-2 cells. Potential pathways, which could be involved include MEK, PI3K, MAPK, STAT3, AKT or ERK. Additional treatment of co-cultures with single growth factors did not accelerate or improve the angiogenesis-inducing potential of SaOS-2 cells. Knowledge of the detailed molecular mechanisms involved in angiogenesis control will hopefully allow improved approaches to be developed for prevascularisation of bone tissue engineering constructs.