687 resultados para optical fiber communication


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. Methods: The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a Ge-68 point source, and a calibrated 68Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A Na-22 point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of F-18-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of F-18-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of F-18-FDG and imaged for 2 h with electrocardiogram gating. Results: The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1 %. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. Conclusion: We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional correction techniques are needed to achieve quantitative imaging with such an insert.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new electrochemiluminescence (ECL) microoptoprobe with simple structure. small sampling volume and high efficiency was developed. It was constructed by fixing the transparent gold mini-grid on the end surface of the optical fiber, and by surrounding the fiber with the counter- and reference electrodes to form a self-contained three-electrode system. The use of mini-grid electrode increased the surface area and collection efficiency. which resulted in higher ECL signal and better sensitivity. The counter electrode together with one end of the fiber formed a mini-vessel, which eliminated the need of additional container and allowed to perform ECL detection in a very small volume (about 10 mul). The microoptoprobe obtained was characterized with the Ru(bpy)(3)(2-)-tripropylamine system and was applied for the determination of oxalate and chlorpromazine (CPZ). Detection limits (S/N = 3) were 5 x 10(-7) and 1 x 10(-6) mol l(-1) for oxalate and CPZ. respectively. The linear range for oxalate and CPZ extended from 1 x 10(-6) to 1 x 10(-3) mol l(-1), and from 5 x 10(-6) to 5 x 10(-4) mol l(-1). respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

介绍了应用前苏联Fizoptika公司生产的 94 1 3AM光纤陀螺传感器 ,利用单片机最小系统开发了角速度测量和旋转角度测量仪 ,可测量旋转物体的角度和角速度 .给出了光纤陀螺仪的硬件组成、软件设计思想及标定方法

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combined detection system of simultaneous contactless conductometric and fluorescent detection for capillary electrophoresis (CE) has been designed and evaluated. The two processes share a common detection cell. A blue light-emitting diode (LED) was used as the excitation source and an optical fiber was used to collect the emitting fluorescence for fluorescent detection (FD). Inorganic ions, fluorescein isothiocyanate (FITC)-labeled amino acids and small molecule peptides were separated and detected by the combined detector, and the detection limits (LODs) of sub-μ M level were achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two different kinds of sensors have been developed by using the same kind of vapochromic complexes. The vapochromic materials [Au2Ag2(C6F5)(4)L-2](n) have different colours depending on the ligand L. These materials change, reversibly, their optical properties, colour and fluorescence, in the presence of the vapours of volatile organic compounds (VOCs). For practical applications, two different ways of fixing the vapochromic material to the optical fibre have been used: the sol-gel technique and the electrostatic self-assembly method (ESA). With the first technique the sensors can even be used to detect VOCs in aqueous solutions, and using the second method it has been possible to develop nanosensors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ct: We introduce a new concept for stimulated-Brillouin-scattering-based slow light in optical fibers that is applicable for broadly-tunable frequency-swept sources. It allows slow light to be achieved, in principle, over the entire transparency window of the optical fiber. We demonstrate a slow light delay of 10 ns at 1.55 μm using a 10-m-long photonic crystal fiber with a source sweep rate of 400 MHz/μs and a pump power of 200 mW. We also show that there exists a maximal delay obtainable by this method, which is set by the SBS threshold, independent of sweep rate. For our fiber with optimum length, this maximum delay is ~38 ns, obtained for a pump power of 760 mW.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noisemodulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR in the comparison.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Special issue on Sensor Systems for Structural Health Monitoring Abstract—This study addresses the direct calibration of optical fiber strain sensors used for structural monitoring and is carried out in situ. The behavior of fiber-Bragg-grating-based sensor systems when attached to metal bars, in a manner representative of their use as reinforcement bars in structures, was examined and their response calibrated. To ensure the validity of the measurements,this was done using an extensometer with a further calibrationagainst the response of electrical resistance strain gauges, often conventionally used, for comparison. The results show a repeatable calibration generating a suitable geometric factor of extension to strain for these sensors, to enable accurate strain data to be obtained when the fiber-optic sensor system is in use in structural monitoring applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we discuss and evaluate two proposed metro wavelength division multiplexing (WDM) ring network architectures for variable-length packet traffic in storage area networks (SANs) settings. The paper begins with a brief review of the relevant architectures and protocols in the literature. Subsequently, the network architectures along with their medium access control (MAC) protocols are described. Performance of the two network architectures is studied by means of computer simulation in terms of their queuing delay, node throughput and proportion of packets dropped. The network performance is evaluated under symmetric and asymmetric traffic scenarios with Poisson and self-similar traffic. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The statistical properties of the multivariate GammaGamma (ΓΓ) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the su m of ΓΓ random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.