956 resultados para open quantum system
Resumo:
A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.
Resumo:
The nucleation and growth kinetics of CdS nanocrystals in a two-phase synthesis system have been investigated. It was found that the nucleation process is quite lengthy and overlapped with the growth process; nevertheless, as formed nanocrystals show extremely narrow size distribution owing to the unique heterogeneous reacting environment and Ostwald ripening growth. The nucleation and growth kinetics of the nanocrystals were also influenced strongly by the monomer concentration, capping agent concentration, and solvent polarity. It was also found that a high monomer concentration, a low capping agent concentration, and low solvent polarity lead to a higher maximum nucleus concentration and nanocrystal concentration, while high polarity solvents are favorable for the formation of nanocrystals with narrower size distribution and higher photoluminescence quantum yield.
Resumo:
A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.
Resumo:
A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation Of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 mu M; two detection ranges of glucose from 1.0 mu M to 0.5 mM and from 1.0 mM to 20 mM, respectively Were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.
Resumo:
The unique strategy for electrochemiluminescence (ECL) sensor based on the quantum dots (QDs) oxidation in aqueous solution to detect amines is proposed for the first time. Actually, there existed two QDs ECL peaks in anhydrous solution, one at high positive potential and another at high negative potential. However, here we introduced the QDs oxidation ECL in aqueous solution to fabricate a novel ECL sensor. Such sensor needed only lower positive potential to produce ECL, which could prevent the interferences resulted from high potential as that of QDs reduction ECL in aqueous solution. Therefore, the present work not only extended the QDs oxidation ECL application field from anhydrous to aqueous solution but also enriched the variety of ECL system in aqueous solution. Furthermore, we investigated the QDs oxidation ECL toward different kinds of amines, and found that both aliphatic alkyl and hydroxy groups could lead to the enhancement of ECL intensity. Among these amines, 2-(dibutylamino)ethanol (DBAE) is the most effective one, and accordingly, the first ECL sensing application of the QDs oxidation ECL toward DBAE is developed; the as-prepared ECL sensor shows wide linear range, high sensitivity, and good stability.
Resumo:
High-efficiency white electrolurninescence from a single polymer is achieved by enhancing the electroluminescence efficiency and effecting a red-shift in the emission spectrum of the blue emissive species. A single-layer device of the resultant polymer exhibits a higher luminous efficiency than the nonmodified species (12.8 cd A(-1), see figure) and an external quantum efficiency of 5.4 % with CIE coordinates of (0.31,0.36), exemplifying the success of the reported methodology.
Resumo:
Photoluminescence (PL) quantum efficiency is a key issue in designing successful light-emitting polymer systems. Exciton relaxation is strongly affected by exciton quenching at nonradiative trapping centers and the formation of excimers. These factors reduce the PL quantum yield of light-emitting polymers. In this work, we have systematically investigated the effects of exciton confinement on the PL quantum yield of an oligomer, polymer, and alternating block copolymer (ABC) PPV system. Time-resolved and temperature-dependent luminescence studies have been performed. The ABC design effectively confine photoexcitations within the chromophores, preventing exciton migration and excimer formation. An unusually high (PL) quantum yield (above 90%) in the solid state is reported for the alternating block copolymer PPV, as compared to that of similar to 30% of the polymer and oligomer model compounds. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Polyaniline is prepared by chemical polymerization of aniline in an acidic solution using H2O2 as an oxidant and ferrous chloride as a catalyst. A wide variety of synthesis parameters are studied, such as the amount of the catalyst, reaction temperature, reaction time, initial molar ratio of oxidant, monomer and catalyst, and aniline and HCl concentrations. The polymerization of aniline can be initiated by a very small amount of catalyst. The yield and the conductivity of product depend on the initial molar ratio of the oxidant and monomer. The polyaniline with a conductivity of about 10 degrees S/cm and a yield of 60% is prepared under optimum conditions. The process of polymerization was studied by in situ ultraviolet-visible spectroscopy and open-circuit potential technology. Compared to the polymerization process in a (NH4)(2)S2O8 system, the features of the H2O2-Fe2+ system are pointed out, and the chain growth mechanism is proposed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Polyaniline (PAn) with different molecular weight was prepared by adding organic solvents such as acetone, ethanol or THF into the polymerization mixture. Open-circuit potential measurements showed that the polymerization rate was lowered by the addition of the organic solvent Spectral studies showed that PAn intermediate before the oxidant was consumed was pernigraniline and it was reduced to emeraldine base rapidly by aniline in the termination period. A mechanism of chain propagation was proposed. Chain propagation and autoacceleration period were almost independent of addition of pernigraniline, and the autoacceleration of aniline polymerization is due to more rapid initiation rate. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.
Resumo:
We have developed a two-stage growth one-step process for cultivation of Haematococcus using a self-designed system that mimics an open pond in the natural environment. The characteristics of this process are green vegetative cell growth and cysts transformation and pigment accumulation that proceed spontaneously and successively in one open photobioreactor. Four strains of Haematococcus (H. pluvialis 26; H. pluvialis 30; H. pluvialis 34; H. pluvialis WZ) were cultured in this imitation system for a duration of 12 days. The changes in cell density and medium pH were closely monitored, and the astaxanthin content and yield of the four Haematococcus strains were measured at the end of 12 days of cultivation. Two of the strains, H. pluvialis 26 and H. pluvialis WZ, were selected as strains suitable for mass culture, resulting in the astaxanthin yield of 51.06 and 40.25 mg L-1 which are equivalent to 2.79 and 2.50% of their dry biomass respectively. Based on the laboratory work, 6 batch cultures of H. pluvialis WZ were conducted successfully to produce astaxanthin in two 100 m(2) open race-way pond by two-stage growth one-step process. The astaxanthin content ranged from 1.61 to 2.48 g 100 g(-1) dry wt., with average astaxanthin content of 2.10 g 100 g(-1) dry wt. Compared with the one-stage production of astaxanthin based on continuous culture, the superiority of our process is that it can accumulate much more astaxanthin in red cysts. Compared with two-stage production of astaxanthin, the advantage of our process is that it does not need to divide the production process into two parts using two bioreactors. The presented work demonstrates the feasibility for producing astaxanthin from Haematococcus using a two-stage growth one-step process in open pond, culture systems that have been successfully used for Spirulina and Chlorella mass culture. The future of Haematococcus astaxanthin production has been also discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented
Resumo:
A new continuous configuration time-dependent self-consistent field method has been developed to study polyatomic dynamical problems by using the discrete variable representation for the reaction system, and applied to a reaction system coupled to a bath. The method is very efficient because the equations involved are as simple as those in the traditional single configuration approach, and can account for the correlations between the reaction system and bath modes rather well. (C) American Institute of Physics.