999 resultados para native chemical ligation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Antibiotic stewardship includes development of practice guidelines incorporating local microbiology and resistance patterns. In case of septic arthritis (SA), addition of vancomycin to the empiric therapy and broad-spectrum antibiotherapy in some clinical settings are subjects of discussion. Our objective was to review the local epidemiology of native septic arthritis in adults, in order to establish local guidelines for empiric therapy. Methods: Retrospective study based on positive synovial fluid cultures and hospital discharge diagnoses of SA obtained from 1999 to 2008 in patients _16 years. Medical records were reviewed to assess the diagnosis and complete relevant clinical information. Results: During this ten-year period, we identified 233 SA on native joints in 231 patients. 107 episodes (46%) were obtained through positive synovial fluid cultures, and 126 episodes (54%) through the discharge diagnosis. 147 SA (63%) were large joint infections (LJI). 35 SA (15%) occurred in intravenous drug users. Preexisting arthropathy was present in 51% of cases. 42% of patients with small joint infection (SJI) were diabetic, vs. 23% with LJI (p = 0.003). When available, synovial fluid direct examination was positive in 35% of cases. Etiologic agents are reported in the table. Five of the 11 MRSA SA (45%) occurred in known carriers. SJI were more frequently polymicrobial (24% vs. 1%, p<0.001). For LJI, an empiric treatment with amoxicillin/clavulanate (A/C) would have been appropriate in 85% of cases. MRSA (8 cases) and tuberculous (7 cases) arthritis would have been the most frequently untreated pathogens. Addition of vancomycin to A/C in MRSA carriers would rise the adequacy to 87%. In contrast, A/C would cover only 75% of SJI (82% if restricted to non-diabetic patients). MRSA (3 cases) and P. aeruginosa (9 cases, 7 monomicrobial) would be the main untreated pathogens. An anti-pseudomonal penicillin would have been appropriate in 94% of cases of SJI (P = 0.002 vs. A/C, p = 0.19 if diabetic patients not included). Conclusions: Treatment with A/C seems adequate for empiric coverage of LJI in our setting. Broad-spectrum antibiotherapy was significantly superior for SJI in diabetic patients, due to different causative bacteria. In an area of low MRSA incidence, our results do not justify a systematic empiric therapy for MRSA, which should be considered in a known carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P) = I0¿exp(¿P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the areas where irrigated rice is grown in the south of Brazil, few studies have been carried out to investigate the spatial variability structure of soil properties and to establish new forms of soil management as well as determine soil corrective and fertilizer applications. In this sense, this study had the objective of evaluating the spatial variability of chemical, physical and biological soil properties in a lowland area under irrigated rice cultivation in the conventional till system. For this purpose, a 10 x 10 m grid of 100 points was established, in an experimental field of the Embrapa Clima Temperado, in the County of Capão do Leão, State of Rio Grande do Sul. The spatial variability structure was evaluated by geostatistical tools and the number of subsamples required to represent each soil property in future studies was calculated using classical statistics. Results showed that the spatial variability structure of sand, silt, SMP index, cation exchange capacity (pH 7.0), Al3+ and total N properties could be detected by geostatistical analysis. A pure nugget effect was observed for the nutrients K, S and B, as well as macroporosity, mean weighted diameter of aggregates, and soil water storage. The cross validation procedure, based on linear regression and the determination coefficient, was more efficient to evaluate the quality of the adjusted mathematical model than the degree of spatial dependence. It was also concluded that the combination of classical with geostatistics can in many cases simplify the soil sampling process without losing information quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils play a fundamental role in the production of human foods. The Oxisols in the state of Paraná are among the richest and most productive soils in Brazil, but degradation and low porosity are frequently documented, due to intensive farming involving various management strategies and the application of high-tech solutions. This study aims to investigate changes in the porosity of two Red Oxisols (Latossolos Vermelhos), denoted LVef (eutroferric) and LVdf (dystroferric) under conventional and no-tillage soil management, with a succession of annual crops of soybean, maize and wheat over a continuous period of more than 20 years. After describing the soil profiles under native forest, no-tillage management and conventional tillage using the crop profile method, deformed and non-deformed soil samples were collected from the volumes most compacted by human intervention and the physical, chemical and mineralogical properties analyzed. The various porosity classes (total pore volume, inter-aggregate porosity between channels and biological cavities) and intra-aggregate porosity (determined in 10 cm³ saturated clods subjected to a pressure of -10 kPa to obtain a pore volume with a radius (r eq), > 15 μm and < 15 μm). The results showed that the effects of no-tillage farming on porosity are more pronounced in both soil types. Porosity of the LVdf was higher than pf the LVef soil, whatever the management type. In the LVdf soil, only pores with a radius of > 15 μm were affected by farming whereas in the LVef soil, pores with a radius of < 15 μm were affected as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different compartments. The aim of this study was to evaluate the effect of different management systems on the labile and stable organic matter of a dystrophic Red Latosol (Oxisol). The following properties were determined: total organic C and total N (TOC and TN), particulate organic C and particulate N (POC and PN), organic C and N mineral-associated (MOC and NM) and particulate organic C associated with aggregate classes (POCA). Eight treatments were used: seven with soil management systems and one with native Cerrado as a reference. The experiment was designed to study the dynamics of systems of tillage and crop rotation, alternating in time and space. The experimental design was a randomized block design with three replications. The soil samples were collected from five depths: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Changes in organic C by land use occurred mainly in the fraction of particulate organic matter (> 53 mm). Proper management of grazing promoted increased levels of particulate organic matter by association with larger aggregates (2-8 mm), demonstrating the importance of the formation of this aggregate class for C protection in pasture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.