845 resultados para nanomedicine, drug delivery, silver nanoparticles, glioblastoma, nanotechnology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically tuned silver nanoparticles (AgNP's) functionalized with ω-mercaptoalkanoic acids are synthesized and used as a signal amplifier for the surface-enhanced resonance Raman scattering (SERRS) study of heme cofactor in methemoglobin (metHb). Even though both mercaptopropionic acid (MPA)- and mercaptononanoic acid (MNA)-functionalized AgNP's exemplify vastly enhanced SERRS signal of metHb, MNA-AgNP's amplify the SERRS signal amid preservation of the nativity of the heme pocket, unlike MPA-AgNP's. The electrostatic interaction between MNA-AgNP's and metHb leads to instant signal enhancement with a Raman enhancement factor (EF(SERS)) of 4.2 × 10(3). Additionally, a Langmuir adsorption isotherm has been employed for the adsorption of metHb on the MNA-AgNP surface, which provides the real surface coverage and equilibrium constant (K) of metHb as 139 nM and 3.6 × 10(8) M(-1), respectively. The lowest detection limit of 10 nM for metHb has been demonstrated using MNA-AgNP's besides retaining the nativity of the heme pocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid medications are often crushed and mixed with food or thickened water to aid drug delivery for those who cannot or prefer not to swallow whole tablets or capsules. Dysphagic patients have the added problem of being unable to safely swallow thin fluids so water thickened with polysaccharides is used to deliver crushed medications and ensure safe swallowing. It is postulated that these polysaccharide systems may restrict drug release by reducing the diffusion of the drug into gastric fluids. METHODS By using a vertical diffusion cell separated with a synthetic membrane, the diffusion of a model drug (atenolol) was studied from a donor system containing the drug dispersed into thickened water with xanthan gum (concentration range from 0.005%-2.2%) into a receptor system containing simulated gastric fluid (SGF) at 37°C. The amount of drug transferred was measured over 8 hours and diffusion coefficients estimated using the Higuchi model approach. RESULTS Atenolol diffusion decreased with increasing xanthan gum concentration up to 1.0%, above which diffusion remained around 300 μ2s-1. The rheological measurements captured the influence of the structure and conformation of the polysaccharide in water on the movement and availability of the drug in SGF. DISCUSSION Dose form administration for dysphagic patients’ needs special attention from general practitioners, pharmacist and patients. Improving drug release of crushed tablets from thickening agents requires a reduction in the diffusion pathway (e.g. by decreasing drop size radius). This approach could make the drug available in SGF in a short time without compromising the mechanical aspects of thickening agents that guarantee safe swallowing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The adsorption of bovine serum albumin (BSA) onto mesoporous silica spheres (MPS) synthesized from silica colloids was studied employing real time in situ measurements. The stabilities of the BSA at different pH values, their isoelectric points and zeta potentials were determined in order to probe the interactions between the protein and the mesoporous silica. Results The pore size of MPS was designed for protein, and this, coupled with an in depth understanding of the physico-chemical characteristics of the protein and MPS has yielded a better binding capacity and delivery profile. The adsorption isotherm at pH 4.2 fitted the Langmuir model and displayed the highest adsorption capacity (71.43 mg mL-1 MPS). Furthermore, the delivery rates of BSA from the MPS under physiological conditions were shown to be dependent on the ionic strength of the buffer and protein loading concentration. Conclusion Economics and scale-up considerations of mesoporous material synthesized via destabilization of colloids by electrolyte indicate the scaleability and commercial viability of this technology as a delivery platform for biopharmaceutical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin, a protein extracted from sorghum grain, has been formulated into microparticles and proposed for use as a delivery system owing to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum distillers dried grains with solubles (DDGS) may be more efficient, because the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation with sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kontrolloidut radikaalipolymerointimenetelmät, kuten RAFT-polymerointi, ovat moderni tapa valmistaa polymeerejä säädellysti. RAFT-polymeroinnilla polymeerien ketjunpituutta, moolimassajakaumaa, mikrorakennetta (taktisuus, järjestys), koostumusta ja funktionaalisuutta kyetään hallitsemaan. Siten menetelmällä voidaan valmistaa uudenlaisia polymeeriarkkitektuureja, kuten blokki- ja tähtipolymeerejä, sekä hybridimateriaaleja ja biokonjugaatteja. Polymeeristen rakennuspalikoiden itsejärjestyminen, missä huolellisesti syntetisoidut polymeerit järjestyvät halutulla tavalla nanoskaalassa, on suosittu tutkimuskohde materiaalitieteessä. On huomattava, että blokkipolymeerien itsejärjestyminen on vielä suhteellisen nuori tutkimusaihe. Tämän hetkiset polymeeriset nanomateriaalit ovat suhteellisen yksinkertaisia luonnon luomuksiin verrattuina, tarjoten jatkuvasti uusia mahdollisuuksia seuraavan sukupolven polymeereille. Tässä työssä RAFT-polymeroinnilla syntetisoitiin amfifiilisiä di- ja triblokkikopolymeerejä sekä tutkittiin niiden järjestymistä nanorakenteiksi. Kaikissa blokkikopolymeereissä käytettiin lämpöherkkää poly(N-isopropyyliakryyliamidia). Siten polymeerit ja tutkitut materiaalit reagoivat lämpötilanmuutokseen ympäristössä eli ovat ns. ympäristöherkkiä. Työssä tutkittiin taktisuuden kontrollointia N-isopropyyliakryyliamidin RAFT-polymeroinnissa. Polymeerin taktisuutta sekä ketjunpituutta ja blokkijärjestystä säätämällä voitiin hallita polymeerin itsejärjestymistä vesiliuoksessa. Amfifiiliset polymeerit järjestyivät laimeissa vesiliuoksissa erilaisiksi misellirakenteiksi, muodostaen ns. mikrosäiliöitä. Tällaisilla polymeereillä odotetaan olevan sovelluksia esim. lääkeainevapautuksessa. Amfifiilejä käytetään myös esimerkiksi apuaineina pinnoitteissa ja kosmetiikassa. Kiinteässä tilassa tutkitut triblokkikopolymeerit muodostivat teoreettisesti ennustettuja morfologioita. Lämpöherkän materiaalin hydrogeelit toimivat suodatinmembraanina nanokokoluokassa. RAFT-polymeroinnilla syntetisoituja polymeereja voidaan sellaisenaan käyttää kultananopartikkeleiden päällystämiseen. Kultananopartikkelit ovat erittäin kiinostavia mm. niiden stabiilisuuden ja ainutlaatuisten pintaominaisuuksien vuoksi. Kun amfifiilisiä polymeerejä kiinnitettiin kultapartikkelin pinnalle, sen liuos- ja optisia ominaisuuksia voitiin säädellä pH:n ja lämpötilan avulla. Tällaisilla kultananopartikkeleilla on sovelluksia mm. diagnostiikassa, sensoreina ja solukuvauksessa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum “distiller’s dried grains with solubles” (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum distillers dried grains with solubles (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel burn wound hydrogel dressing has been previously developed which is composed of 2-acrylamido-2-methylpropane sulfonic acid sodium salt with silver nanoparticles. This study compared the antimicrobial efficacy of this novel dressing to two commercially available silver dressings; Acticoat™ and PolyMem Silver(®). Three different antimicrobial tests were used: disc diffusion, broth culture, and the Live/Dead(®) Baclight™ bacterial viability assay. Burn wound pathogens (P. aeruginosa, MSSA, A. baumannii and C. albicans) and antibiotic resistant strains (MRSA and VRE) were tested. All three antimicrobial tests indicated that Acticoat™ was the most effective antimicrobial agent, with inhibition zone lengths of 13.9-18.4mm. It reduced the microbial inocula below the limit of detection (10(2)CFU/ml) and reduced viability by 99% within 4h. PolyMem Silver(®) had no zone of inhibition for most tested micro-organisms, and it also showed poor antimicrobial activity in the broth culture and Live/Dead(®) Baclight™ assays. Alarmingly, it appeared to promote the growth of VRE. The silver hydrogel reduced most of the tested microbial inocula below the detection limit and decreased bacterial viability by 94-99% after 24h exposure. These results support the possibility of using this novel silver hydrogel as a burn wound dressing in the future

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow Microspheres of hydroxyapatite-polymer composite can be used as carriers in drug delivery and fillers in tissue engineering. Based on the concept of soft chemistry, a battery of technique is available in the literature to synthesize hollow microspheres, however, an economically viable synthesis route, having good control over the microarchitect and easy to be scaled up, is yet to be developed. Polymer matrix mediated synthesis of inorganic nanoparticles is known to synthesize nanoparticles with controlled morphology and dimensions. It is termed as biomimetic synthesis. Integrating the biomimetic synthesis of nano-particles and spray drying techniques, a novel process of producing hydroxyapatite-polymer composite hollow microspheres is briefly discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several of the newly developed drug molecules experience poor biopharmaceutical behavior, which hinders their effective delivery at the proper site of action. Among the several strategies employed in order to overcome this obstacle, mesoporous silicon-based materials have emerged as promising drug carriers due to their ability to improve the dissolution behavior of several poorly water-soluble drugs compounds confined within their pores. In addition to improve the dissolution behavior of the drugs, we report that porous silicon (PSi) nanoparticles have a higher degree of biocompatibility than PSi microparticles in several cell lines studied. In addition, the degradation of the nanoparticles showed its potential to fast clearance in the body. After oral delivery, the PSi particles were also found to transit the intestines without being absorbed. These results constituted the first quantitative analysis of the behavior of orally administered PSi nanoparticles compared with other delivery routes in rats. The self-assemble of a hydrophobin class II (HFBII) protein at the surface of hydrophobic PSi particles endowed the particles with greater biocompatibility in different cell lines, was found to reverse their hydrophobicity and also protected a drug loaded within its pores against premature release at low pH while enabling subsequent drug release as the pH increased. These results highlight the potential of HFBII-coating for PSi-based drug carriers in improving their hydrophilicity, biocompatibility and pH responsiveness in drug delivery applications. In conclusion, mesoporous silicon particles have been shown to be a versatile platform for improving the dissolution behavior of poorly water-soluble drugs with high biocompatibility and easy surface modification. The results of this study also provide information regarding the biofunctionalization of the THCPSi particles with a fungal protein, leading to an improvement in their biocompatibility and endowing them with pH responsive and mucoadhesive properties.