933 resultados para multi-phase flow
Resumo:
In this work the copper(II) complexation parameters of aquatic organic matter, aquatic and soil humic substances from Brazilian were determined using a new versatile approach based on a single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods. The results regarding the copper(II) complexation capacity and conditional stability constants obtained for humic materials were compared with those obtained using direct potentiometry with a copper-ion-selective electrode. The analytical procedure based on ultrafiltration is a good alternative to determine the complexation parameters in natural organic material from aquatic and soil systems. This approach presents additional advantages such as better sensibility, applicability for multi-element capability, and its possible to be used under natural conditions when compared with the traditional ion-selective electrode.
Resumo:
Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, a preconcentration and separation system based on continuous flow hydride generation is proposed to improve the determination of As and Se by total reflection X-ray fluorescence spectrometry. The generated hydrides are continuously separated from the liquid phase and collected in a chamber containing 250 mul of HCI/HNO3 1:1 (v/v) solution. Hydride generation conditions and collection of the hydrides were evaluated. Under optimised conditions, enrichment factors of 55 for As and 82 for Se were attained. Detection limits of 0.3 mug l(-1) for As and Se were obtained when 20 ml of sample was used. Analysis of a natural water standard reference material from National Institute of Standard and Technology (SRM-1640) was in agreement with the certified values at the 95% confidence level. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents a new three-phase transformer modeling suitable for simulations in Pspice environment, which until now represents the electrical characteristics of a real transformer. It is proposed the model comparison to a three-phase transformer modeling present in EMTP - ATP program, which includes the electrical and magnetic characteristics. In addition, a set including non-linear loads and a real three-phase transformer was prepared in order to compare and validate the results of this new proposed model. The three-phase Pspice transformer modeling, different from the conventional one using inductance coupling, is remarkable for its simplicity and ease in simulation process, since it uses available voltage and current sources present in Pspice program, enabling simulations of three-phase network system including the most common configuration, three wires in the primary side and four wires in the secondary side (three-phases and neutral). Finally, the proposed modeling becomes a powerful tool for three-phase network simulations due to its simplicity and accuracy, able to simulate and analyze harmonic flow in three-phase systems under balanced and unbalanced conditions.
Resumo:
The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.
Resumo:
A novel method for surface profilometry by holography is presented. We used a diode laser emitting at many wavelengths simultaneously as the light source and a Bi12TiO20 (BTO) crystal as the holographic medium in single exposure processes. The employ of multi-wavelength, large free spectral range (FSR) lasers leads to holographic images covered of interference fringes corresponding to the contour lines of the studied surface. In order to obtain the relief of the studied surface, the fringe analysis was performed by the phase stepping technique (PST) and the phase unwrapping was carried out by the Cellular-automata method. We analysed the relief of a tilted flat metallic bar and a tooth prosthesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Physical parameters of different types of lenses were measured through digital speckle pattern interferometry (DSPI) using a multimode diode laser as light source. When such lasers emit two or more longitudinal modes simultaneously the speckle image of an object appears covered of contour fringes. By performing the quantitative fringe evaluation the radii of curvature as well as the refractive indexes of the lenses were determined. The fringe quantitative evaluation was carried out through the four- and the eight-stepping techniques and the branch-cut method was employed for phase unwrapping. With all these parameters the focal length was calculated. This whole-field multi-wavelength method does enable the characterization of spherical and aspherical lenses and of positive and negative ones as well. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The on-line separation and identification of two important taxonomic markers for plant species of the Paepalanthus genus, the flavonoids 6-methoxykaempferol-3-O-β-D-glucopyranoside and 6-methoxykaempferol-3-O-β-D-6″(p-coumaroyl)glucopyranoside, has been performed with an HPLC-NMR coupling using C30 phase. 1D spectra have been recorded in the stopped-flow mode for the two predominant chromatographic peaks. This is the first application of HPLC-NMR coupling using C30 phase to a taxonomic problem. The technique drastically reduces the required amount of sampling for structure determination. © Springer-Verlag 2000.
Resumo:
The aim of this work is to characterize a metallic slurry (Al-4.5%Cu) flow during thixoforming of an automotive valve. The necessary globular structure was obtained by first inoculating the alloy with TIBAL (5%Ti, 1%B, Al - rest) at 750.0°C, and then reheating to a state between liquidus and solidus prior to thixoforming. Two metallic slurries, with a solid phase of approximately 86.1 and 78.2 percent, were used to generate different experimental flow patterns during the thixoforming process. The flow of the material into the die was observed for total, and partial displacement (2.7, 5.4, 7.5mm) of the punch. The first displacement shows formation of the valve rod. The patterns at each step of displacement of the punch were preserved by quenching in water, thus revealing the profile of the die fill and microstructural evolution. Degeneration of the globular phase was observed along the piece thixoextruded. Thixoextrusion forces versus time curves were generated for partial and full displacement of the punch. Porosity was visible along the billet prior to thixoforming. However, some areas show that the porosity gradually decreased to zero as the thixoextrusion pressure increased. Turbulent, transient and laminar flow are analyzed in this work.
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
This paper presents a new approach for solving constraint optimization problems (COP) based on the philosophy of lexicographical goal programming. A two-phase methodology for solving COP using a multi-objective strategy is used. In the first phase, the objective function is completely disregarded and the entire search effort is directed towards finding a single feasible solution. In the second phase, the problem is treated as a bi-objective optimization problem, turning the constraint optimization into a two-objective optimization. The two resulting objectives are the original objective function and the constraint violation degree. In the first phase a methodology based on progressive hardening of soft constraints is proposed in order to find feasible solutions. The performance of the proposed methodology was tested on 11 well-known benchmark functions.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
A decentralized solution method to the AC power flow problem in power systems with interconnected areas is presented. The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of adjacent areas, being only necessary to exchange border information related to the interconnection lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. A 9-bus didactic system, the IEEE Three Area RTS-96 and the IEEE 118 bus test systems are used in order to show the operation and effectiveness of the distributed AC power flow.
Resumo:
The class of piezoelectric actuators considered in this paper consists of a multi-flexible structure actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and in different directions. The devices were modeled by finite element using the software ANSYS and the topology optimization method. The following XY actuators were build to achieve maximum displacement in the X and Y directions with a minimum crosstalk between them. The actuator prototypes are composed of an aluminum structure, manufactured by using a wire Electrical Discharge Machining, which are bonded to rectangular PZT5A piezoceramic blocks by using epoxy resin. Multi-actuator piezoelectric device displacements can be measured by using optical interferometry, since it allows dynamic measurements in the kHz range, which is of the order of the first resonance frequency of these piezomechanisms. A Michelson-type interferometer, with a He-Ne laser source, is used to measure the displacement amplitudes in nanometric range. A new optical phase demodulation technique is applied, based on the properties of the triangular waveform drive voltage applied to the XY piezoelectric nanopositioner. This is a low-phase-modulation-depth-like technique that allows the rapid interferometer auto-calibration. The measurements were performed at 100 Hz frequency, and revealed that the device is linear voltage range utilized in this work. The ratio between the generated and coupled output displacements and the drive voltages is equal to 10.97 nm/V and 1.76 nm/V, respectively, which corresponds to a 16% coupling rate. © 2010 IEEE.