910 resultados para monogamous mating
Resumo:
We describe a Bayesian method for investigating correlated evolution of discrete binary traits on phylogenetic trees. The method fits a continuous-time Markov model to a pair of traits, seeking the best fitting models that describe their joint evolution on a phylogeny. We employ the methodology of reversible-jump ( RJ) Markov chain Monte Carlo to search among the large number of possible models, some of which conform to independent evolution of the two traits, others to correlated evolution. The RJ Markov chain visits these models in proportion to their posterior probabilities, thereby directly estimating the support for the hypothesis of correlated evolution. In addition, the RJ Markov chain simultaneously estimates the posterior distributions of the rate parameters of the model of trait evolution. These posterior distributions can be used to test among alternative evolutionary scenarios to explain the observed data. All results are integrated over a sample of phylogenetic trees to account for phylogenetic uncertainty. We implement the method in a program called RJ Discrete and illustrate it by analyzing the question of whether mating system and advertisement of estrus by females have coevolved in the Old World monkeys and great apes.
Resumo:
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species < wing-dimorphic male species < winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species.
Resumo:
Drosophila melanogaster larvae defend themselves against parasitoid attack via the process of encapsulation. However, flies that successfully defend them selves have reduced fitness as adults. Adults which carry an encapsulated parasitoid egg are smaller and females produce significantly fewer eggs than controls. Capsule-bearing males allowed repeated copulations with females do not show a reduction in their number of offspring, but those allowed to copulate only once did. No differences were found in time to first oviposition in females, or in time to first copulation in males. We interpret the results as arising from a trade-off between investing resources in factors promoting fecundity and mating success, and in defence against parasitism. The outcome of this investment decision influences the strength of selection for defence against parasitism.
Resumo:
The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, naive female R vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female R vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining R vindemiae attack rates. mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness.
Resumo:
Urban areas have both positive and negative influences on wildlife. For terrestrial mammals, one of the principle problems is the risk associated with moving through the environment whilst foraging. In this study, we examined nocturnal patterns of movement of urban-dwelling hedgehogs (Erinaceus europaeus) in relation to (i) the risks posed by predators and motor vehicles and (ii) nightly weather patterns. Hedgehogs preferentially utilised the gardens of semi-detached and terraced houses. However, females, but not males, avoided the larger back gardens of detached houses, which contain more of the habitat features selected by badgers. This difference in the avoidance of predation risk is probably associated with sex differences in breeding behaviour. Differences in nightly movement patterns were consistent with strategies associated with mating behaviour and the accumulation of fat reserves for hibernation. Hedgehogs also exhibited differences in behaviour associated with the risks posed by humans; they avoided actively foraging near roads and road verges, but did not avoid crossing roads per se. They were, however, significantly more active after midnight when there was a marked reduction in vehicle and foot traffic. In particular, responses to increased temperature, which is associated with increased abundance of invertebrate prey, were only observed after midnight. This variation in the timing of bouts of activity would reduce the risks associated with human activities. There were also profound differences in both area ranged and activity with chronological year which warrant further investigation.
Resumo:
The Acari is the most numerous and diverse group of the subphylum Chelicerata. With approximately 55 000 described species (and estimates of up to 1 million extant species), their adaptations for parasitism, phytophagy, mycophagy, saprophagy and predation rival other arthropods and challenge us with a wide variety of biological interactions. While a few studies have unravelled the nature of some endosymbiotic associations between mites or ticks and prokaryotes, almost nothing has been done yet regarding acarine eukaryotic ectosymbionts. Microbial ectosymbionts can benefit their hosts by providing nutrients, by aiding digestion, by enhancing communication, by assisting in mating and/or fertilization, by protecting their host against pathogenic microorganisms, against predation and so on. In this sketch, we introduce a number of described cases of fungal and protist ectosymbionts and discuss the role they might play in the life of their acarine hosts.
Resumo:
Wild pollinators have been shown to enhance the pollination of Brassica napus(oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policymakers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Resumo:
The courtship behavior of the navel orangeworm, Amyelois transitella, was examined in a wind tunnel. Sixty nine courtship sequences were analyzed and successful sequences divided into two categories: rapid courtship sequences, which involved few breaks in contact, short or no periods of male/female chasing and lasted <10 s between initial contact and mating; and prolonged courtship sequences, which involved many breaks in contact, extended periods of male/female chasing and lasted >10 s. Fifty six (81%) courtships were successful (50.7% rapid courtship and 30.4% prolonged courtship); the remaining 13 (18.8%) sequences were failed courtships. Of failed courtships, 9 (13.0%) were due to males losing contact with females during courtship chases and 4 (5.8%) due to females flying away immediately after male contact. Of all courtship sequences involving a break in contact during a chase, 38.5% resulted in an unsuccessful mating attempt. These findings contrast with previous studies of the courtship behavior of the navel orangeworm, potentially indicating that the type of bioassay used to study courtship may have a large effect on the behavioral sequences displayed. We evaluate several diagnostic techniques for the analysis of sequences of behavioral transitions.
Resumo:
Life history parameters and reproductive behaviors of the harlequin bug, Murgantia histrionica Hahn (Heteroptera: Pentatomidae), were determined. Total developmental time from egg to adult was ≈48 d. After a sexual maturation period of ≈7 d, both sexes mated repeatedly, with females laying multiple egg masses of 12 eggs at intervals of 3 d. Adult females lived an average of 41 d, whereas adult males lived an average of 25 d. Courtship and copulation activities peaked in the middle of the photophase. In mating experiments in which mixed sex pairs of virgin and previously mated bugs were combined in all possible combinations, the durations of courtship and copulation by virgin males were significantly longer with both virgin and previously mated females than the same behaviors for previously mated males. When given a choice between a virgin or previously mated female, previously mated males preferred to mate with virgin females, whereas virgin males showed no preference for virgin over previously mated females. Analyses of mating behaviors with ethograms and behavioral transition matrices suggested that a primary reason for failure to copulate by virgin males was the incorrect rotation of their pygophores to the copulation position, so that successful alignment of the genitalia could not occur.
Resumo:
The trajectories of pheromone plumes in canopied habitats, such as orchards, have been little studied. We documented the capture of male navel orangeworm moths, Amyelois transitella, in female-baited traps positioned at 5 levels, from ground level to the canopy top, at approximately 6 m above ground, in almond orchards. Males were captured in similar proportions at all levels, suggesting that they do not favor a particular height during ranging flight. A 3-D sonic anemometer was used to establish patterns of wind flow and temperature at 6 heights from 2.08 to 6.65 m in an almond orchard with a 5 m high canopy, every 3 h over 72 h. The horizontal velocity of wind flow was highest above the canopy, where its directionality also was the most consistent. During the time of A. transitella mating (0300–0600), there was a net vertical displacement upward. Vertical buoyancy combined with only minor reductions in the distance that plumes will travel in the lower compared to the upper canopy suggest that the optimal height for release of pheromone from high-release-rate sources, such as aerosol dispensers (“puffers”), that are deployed at low densities (e.g., 3 per ha.) would be at mid or low in the canopy, thereby facilitating dispersion of disruptant throughout the canopy. Optimal placement of aerosol dispensers will vary with the behavioral ecology of the target pest; however, our results suggest that current protocols, which generally propose dispenser placement in the upper third of the canopy, should be reevaluated.
Resumo:
1. In many fig wasp species, armoured wingless males regularly engage in lethal fights for access to females inside figs, which act as discrete mating patches. 2. Kin selection generally opposes killing brothers, because their reproductive success provides indirect genetic benefits (inclusive fitness). However, siblicide may be avoided if (i) brothers do not occur in the same figs, or (ii) males avoid fighting brothers in the same fig. Alternatively, (iii) siblicide may occur because intense mate competition between brothers at the local scale overcomes kin selection effects, or (iv) males do not recognise kin. 3. A fig may also contain wasps from other closely related species and it is not known if males also fight with these individuals. 4. Nine microsatellite loci were used in the first genetic analysis of fighting in fig wasps. We assigned species and sibling identities to males and tested alternative fighting scenarios for three Sycoscapter wasp species in figs of Ficus rubiginosa. 5. Approximately 60% of figs contained males frommore than one Sycoscapter species and approximately 80% of fights were between conspecifics, but a surprising 20% were between heterospecific males. 6.Within species, fewfigs contained brothers, suggesting that females typically lay one son per fig. Overall, most males do not compete with brothers and all fights observed were between unrelated males. Key words:Competition, fighting, genetics, kin selection, microsatellites, relatedness.
Resumo:
Mechanisms and consequences of the effects of estrogen on the brain have been studied both at the fundamental level and with therapeutic applications in mind. Estrogenic hormones binding in particular neurons in a limbic-hypothalamic system and their effects on the electrophysiology and molecular biology of medial hypothalamic neurons were central in establishing the first circuit for a mammalian behavior, the female-typical mating behavior, lordosis. Notably, the ability of estradiol to facilitate transcription from six genes whose products are important for lordosis behavior proved that hormones can turn on genes in specific neurons at specific times, with sensible behavioral consequences. The use of a gene knockout for estrogen receptor alpha (ERalpha) revealed that homozygous mutant females simply would not do lordosis behavior and instead were extremely aggressive, thus identifying a specific gene as essential for a mammalian social behavior. In dramatic contrast, ERbeta knockout females can exhibit normal lordosis behavior. With the understanding, in considerable mechanistic detail, of how the behavior is produced, now we are also studying brain mechanisms for the biologically adaptive influences which constrain reproductive behavior. With respect to cold temperatures and other environmental or metabolic circumstances which are not consistent with successful reproduction, we are interested in thyroid hormone effects in the brain. Competitive relations between two types of transcription factors - thyroid hormone receptors and estrogen receptors have the potential of subserving the blocking effects of inappropriate environmental circumstances on female reproductive behaviors. TRs can compete with ERalpha both for DNA binding to consensus and physiological EREs and for nuclear coactivators. In the presence of both TRs and ERs, in transfection studies, thyroid hormone coadministration can reduce estrogen-stimulated transcription. These competitive relations apparently have behavioral consequences, as thyroid hormones will reduce lordosis, and a TRbeta gene knockout will increase it. In sum, we not only know several genes that participate in the selective control of this sex behavior, but also, for two genes, we know the causal routes. Estrogenic hormones are also the foci of widespread attention for their potential therapeutic effects improving, for example, certain aspects of mood and cognition. The former has an efficient animal analog, demonstrated by the positive effects of estrogen in the Porsolt forced swim test. The latter almost certainly depends upon trophic actions of estrogen on several fundamental features of nerve cell survival and growth. The hypothesis is raised that the synaptic effects of estrogens are secondary to the trophic actions of this type of hormone in the nucleus and nerve cell body.
Resumo:
Three transgenic Anopheles stephensi lines were established that strongly inhibit transmission of the mouse malaria parasite Plasmodium berghei. Fitness of the transgenic mosquitoes was assessed based on life table analysis and competition experiments between transgenic and wild-type mosquitoes. Life table analysis indicated low fitness load for the 2 single-insertion transgenic mosquito lines VD35 and VD26 and no load for the double-insertion transgenic mosquito line VD9. However, in cage experiments, where each of the 3 homozygous transgenic mosquitoes was mixed with nontransgenic mosquitoes, transgene frequency of all 3 lines decreased with time. Further experiments suggested that reduction of transgene frequency is a consequence of reduced mating success, reduced reproductive capacity, and/or insertional mutagenesis, rather than expression of the transgene itself. Thus, for transgenic mosquitoes released in the field to be effective in reducing malaria transmission, a driving mechanism will be required.
Resumo:
The aim of this study was to describe the population structure, inbreeding and to quantify their effect for different weights, of Santa Ines sheep. For this reason, 6490 data of production and 17,097 animals in the pedigree data set were utilized to evaluate birth weight (BW), weight at 60 days (W60) and weight at 180 days (W180). The genetic structure analysis of the population was realized by the software ENDOG (v.4.6.), resulting in some level of inbreeding for 21.72% of the animals in the pedigree data, being 41.02% the maximum value, and average of 10.74% for the inbred individuals. The population average inbreeding was 2.33% and the average relatedness was 0.73%. The effective number of ancestors was 156 animals and the effective number of founders was 211 individuals. A significant depressive effect of the inbreeding can be verified for all traits. The monitored parameters related with the genetic variability on this population must be constant in order to prevent the decrease in the genetic progress. The utilization of a program for directed mating in the present flock is an appropriate alternative to keep the level of inbreeding under control. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In arthropods, most cases of morphological dimorphism within males are the result of a conditional evolutionarily stable strategy (ESS) with status-dependent tactics. In conditionally male-dimorphic species, the status` distributions of male morphs often overlap, and the environmentally cued threshold model (ET) states that the degree of overlap depends on the genetic variation in the distribution of the switchpoints that determine which morph is expressed in each value of status. Here we describe male dimorphism and alternative mating behaviors in the harvestman Serracutisoma proximum. Majors express elongated second legs and use them in territorial fights; minors possess short second legs and do not fight, but rather sneak into majors` territories and copulate with egg-guarding females. The static allometry of second legs reveals that major phenotype expression depends on body size (status), and that the switchpoint underlying the dimorphism presents a large amount of genetic variation in the population, which probably results from weak selective pressure on this trait. With a mark-recapture study, we show that major phenotype expression does not result in survival costs, which is consistent with our hypothesis that there is weak selection on the switchpoint. Finally, we demonstrate that switchpoint is independent of status distribution. In conclusion, our data support the ET model prediction that the genetic correlation between status and switchpoint is low, allowing the status distribution to evolve or to fluctuate seasonally, without any effect on the position of the mean switchpoint.