997 resultados para modulation cognitive
Resumo:
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Resumo:
Background: Computer assisted cognitive remediation (CACR) was demonstrated to be efficient in improving cognitive deficits in adults with psychosis. However, scarce studies explored the outcome of CACR in adolescents with psychosis or at high risk. Aims: To investigate the effectiveness of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. Method: Intention to treat analyses included 32 adolescents who participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Cognitive abilities, symptoms and psychosocial functioning were assessed at baseline and posttreatment. Results: Improvement in visuospatial abilities was significantly greater in the CACR group than in CG. Other cognitive functions, psychotic symptoms and psychosocial functioning improved significantly, but at similar rates, in the two groups. Conclusion: CACR can be successfully administered in this population; it proved to be effective over and above CG for the most intensively trained cognitive ability.
Resumo:
Connectivity among demes in a metapopulation depends on both the landscape's and the focal organism's properties (including its mobility and cognitive abilities). Using individual-based simulations, we contrast the consequences of three different cognitive strategies on several measures of metapopulation connectivity. Model animals search suitable habitat patches while dispersing through a model landscape made of cells varying in size, shape, attractiveness and friction. In the blind strategy, the next cell is chosen randomly among the adjacent ones. In the near-sighted strategy, the choice depends on the relative attractiveness of these adjacent cells. In the far-sighted strategy, animals may additionally target suitable patches that appear within their perceptual range. Simulations show that the blind strategy provides the best overall connectivity, and results in balanced dispersal. The near-sighted strategy traps animals into corridors that reduce the number of potential targets, thereby fragmenting metapopulations in several local clusters of demes, and inducing sink-source dynamics. This sort of local trapping is somewhat prevented in the far-sighted strategy. The colonization success of strategies depends highly on initial energy reserves: blind does best when energy is high, near-sighted wins at intermediate levels, and far-sighted outcompetes its rivals at low energy reserves. We also expect strong effects in terms of metapopulation genetics: the blind strategy generates a migrant-pool mode of dispersal that should erase local structures. By contrast, near- and far-sighted strategies generate a propagule-pool mode of dispersal and source-sink behavior that should boost structures (high genetic variance among- and low variance within local clusters of demes), particularly if metapopulation dynamics is also affected by extinction-colonization processes. Our results thus point to important effects of the cognitive ability of dispersers on the connectivity, dynamics and genetics of metapopulations.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) Vpu protein interacts with CD4 within the endoplasmic reticula of infected cells and targets CD4 for degradation through interaction with beta-TrCP1. Mammals possess a homologue of beta-TrCP1, HOS, which is also named beta-TrCP2. We show by coimmunoprecipitation experiments that beta-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as beta-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be reversed through the individual silencing of endogenous beta-TrCP1 or beta-TrCP2 but instead required the two genes to be silenced simultaneously.
Resumo:
OBJECTIVE: The authors examined the relationship of cognitive impairment at hospital admission to 6-month outcome (hospital readmission, nursing home admission, and death) in a cohort of elderly medical inpatients. METHODS: A group of 401 medical inpatients age 75 and older underwent a comprehensive geriatric assessment at hospital admission and were followed up for 6 months. Cognitive impairment was defined as a score <24 on the Mini-Mental State Exam. Detection was assessed through blinded review of discharge summary. Follow-up data were gathered from the centralized billing system (hospital and nursing home admissions) and from proxies (death). RESULTS: Cognitive impairment was present in 129 patients (32.3%). Only 48 (37.2%) were detected; these had more severe impairment than undetected cases. During follow-up, cognitive impairment, whether detected or not, was associated with death and nursing home admission. After adjustment for health, functional, and socioeconomic status, an independent association remained only for nursing home admission in subjects with detected impairment. Those with undetected impairment appeared to be at intermediate risk, but this relationship was not statistically significant. CONCLUSION: In these elderly medical inpatients, cognitive impairment was frequent, rarely detected, and associated with nursing home admission during follow-up. Although this association was stronger in those with detected impairment, these results support the view that acute hospitalization presents an opportunity to better detect cognitive impairment in elderly patients and target further interventions to prevent adverse outcomes such as nursing home admission.
Resumo:
Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.
Resumo:
Brain oxidative processes play a major role in age-related cognitive decline, thus consumption of antioxidant-rich foods might help preserve cognition. Our aim was to assess whether consumption of antioxidant-rich foods in the Mediterranean diet relates to cognitive function in the elderly. In asymptomatic subjects at high cardiovascular risk (n = 447; 52% women; age 5580 y) enrolled in the PREDIMED study, a primary prevention dietary-intervention trial, we assessed food intake and cardiovascular risk profile, determined apolipoprotein E genotype, and used neuropsychological tests to evaluate cognitive function.We also measured urinary polyphenols as an objective biomarker of intake. Associations between energy-adjusted food consumption, urinary polyphenols, and cognitive scores were assessed by multiple linear regression models adjusted for potential confounders. Consumption of some foods was independently related to better cognitive function. The specific associations [regression coefficients (95% confidence intervals)] were: total olive oil with immediate verbal memory [0.755 (0.1511.358)]; virgin olive oil and coffee with delayed verbal memory [0.163 (0.0100.316) and 0.294 (0.0550.534), respectively];walnuts with working memory [1.191 (0.0612.322)]; and wine with Mini-Mental State Examination scores [0.252 (0.0060.496)]. Urinary polyphenols were associated with better scores in immediate verbal memory [1.208 (0.2362.180)]. Increased consumption of antioxidant-rich foods in general and of polyphenols in particular is associated with better cognitive performance in elderly subjects at high cardiovascular risk. The results reinforce the notion that Mediterranean diet components might counteract age-related cognitive decline.
Resumo:
Despite that cognitive impairment is a known early feature present in multiple sclerosis (MS) patients, the biological substrate of cognitive deficits in MS remains elusive. In this study, we assessed whether T1 relaxometry, as obtained in clinically acceptable scan times by the recent Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence, may help identifying the structural correlate of cognitive deficits in relapsing-remitting MS patients (RRMS). Twenty-nine healthy controls (HC) and forty-nine RRMS patients underwent high-resolution 3T magnetic resonance imaging to obtain optimal cortical lesion (CL) and white matter lesion (WML) count/volume and T1 relaxation times. T1 z scores were then obtained between T1 relaxation times in lesion and the corresponding HC tissue. Patient cognitive performance was tested using the Brief Repeatable Battery of Neuro-psychological Tests. Multivariate analysis was applied to assess the contribution of MRI variables (T1 z scores, lesion count/volume) to cognition in patients and Bonferroni correction was applied for multiple comparison. T1 z scores were higher in WML (p < 0.001) and CL-I (p < 0.01) than in the corresponding normal-appearing tissue in patients, indicating relative microstructural loss. (1) T1 z scores in CL-I (p = 0.01) and the number of CL-II (p = 0.04) were predictors of long-term memory; (2) T1 z scores in CL-I (β = 0.3; p = 0.03) were independent determinants of long-term memory storage, and (3) lesion volume did not significantly influenced cognitive performances in patients. Our study supports evidence that T1 relaxometry from MP2RAGE provides information about microstructural properties in CL and WML and improves correlation with cognition in RRMS patients, compared to conventional measures of disease burden.
Ecological momentary assessment to evaluate cognitive-behavioral treatment for binge eating disorder
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.
Resumo:
The aim of this study is to identify cognitive variables that predict disordered eating attitudes in a nonclinical sample composed of 50 female university students. Repertory grid technique was used to assess cognitive features of self-construing and cognitive conflicts. Drive for Thinness and Body Dissatisfaction scales from the Eating Disorder Inventory 2 were used as dependent variables, as previous studies suggested that high scores on these scales are associated with the risk of developing or aggravating eating syndromes. Results suggest that drive for thinness can be associated with cognitive conflicts, whereas body dissatisfaction may be higher for those who construct themselves as inadequate and similar to others. In addition, both dependent variables were predicted by being younger and having a higher body mass index.
Resumo:
Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks